Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 283
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Br J Psychiatry ; 224(6): 198-204, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38235531

RESUMO

BACKGROUND: Phase three trials of the monoclonal antibodies lecanemab and donanemab, which target brain amyloid, have reported statistically significant differences in clinical end-points in early Alzheimer's disease. These drugs are already in use in some countries and are going through the regulatory approval process for use in the UK. Concerns have been raised about the ability of healthcare systems, including those in the UK, to deliver these treatments, considering the resources required for their administration and monitoring. AIMS: To estimate the scale of real-world demand for monoclonal antibodies for Alzheimer's disease in the UK. METHOD: We used anonymised patient record databases from two National Health Service trusts for the year 2019 to collect clinical, demographic, cognitive and neuroimaging data for these cohorts. Eligibility for treatment was assessed using the inclusion criteria from the clinical trials of donanemab and lecanemab, with consideration given to diagnosis, cognitive performance, cerebrovascular disease and willingness to receive treatment. RESULTS: We examined the records of 82 386 people referred to services covering around 2.2 million people. After applying the trial criteria, we estimate that a maximum of 906 people per year would start treatment with monoclonal antibodies in the two services, equating to 30 200 people if extrapolated nationally. CONCLUSIONS: Monoclonal antibody treatments for Alzheimer's disease are likely to present a significant challenge for healthcare services to deliver in terms of the neuroimaging and treatment delivery. The data provided here allows health services to understand the potential demand and plan accordingly.


Assuntos
Doença de Alzheimer , Humanos , Doença de Alzheimer/tratamento farmacológico , Reino Unido , Masculino , Idoso , Feminino , Idoso de 80 Anos ou mais , Anticorpos Monoclonais/uso terapêutico , Anticorpos Monoclonais Humanizados/uso terapêutico , Necessidades e Demandas de Serviços de Saúde/estatística & dados numéricos , Pessoa de Meia-Idade
2.
Int J Mol Sci ; 25(5)2024 Feb 26.
Artigo em Inglês | MEDLINE | ID: mdl-38473933

RESUMO

Loss of function of members of the muscleblind-like (MBNL) family of RNA binding proteins has been shown to play a key role in the spliceopathy of RNA toxicity in myotonic dystrophy type 1 (DM1), the most common muscular dystrophy affecting adults and children. MBNL1 and MBNL2 are the most abundantly expressed members in skeletal muscle. A key aspect of DM1 is poor muscle regeneration and repair, leading to dystrophy. We used a BaCl2-induced damage model of muscle injury to study regeneration and effects on skeletal muscle satellite cells (MuSCs) in Mbnl1∆E3/∆E3 and Mbnl2∆E2/∆E2 knockout mice. Similar experiments have previously shown deleterious effects on these parameters in mouse models of RNA toxicity. Muscle regeneration in Mbnl1 and Mbnl2 knockout mice progressed normally with no obvious deleterious effects on MuSC numbers or increased expression of markers of fibrosis. Skeletal muscles in Mbnl1∆E3/∆E3/ Mbnl2∆E2/+ mice showed increased histopathology but no deleterious reductions in MuSC numbers and only a slight increase in collagen deposition. These results suggest that factors beyond the loss of MBNL1/MBNL2 and the associated spliceopathy are likely to play a key role in the defects in skeletal muscle regeneration and deleterious effects on MuSCs that are seen in mouse models of RNA toxicity due to expanded CUG repeats.


Assuntos
Processamento Alternativo , Distrofia Miotônica , Humanos , Criança , Camundongos , Animais , Distrofia Miotônica/genética , Músculo Esquelético/metabolismo , Camundongos Knockout , Modelos Animais de Doenças , RNA/metabolismo , Proteínas de Ligação a RNA/metabolismo
3.
Hum Mol Genet ; 30(12): 1111-1130, 2021 06 09.
Artigo em Inglês | MEDLINE | ID: mdl-33864373

RESUMO

RNA toxicity underlies the pathogenesis of disorders such as myotonic dystrophy type 1 (DM1). Muscular dystrophy is a key element of the pathology of DM1. The means by which RNA toxicity causes muscular dystrophy in DM1 is unclear. Here, we have used the DM200 mouse model of RNA toxicity due to the expression of a mutant DMPK 3'UTR mRNA to model the effects of RNA toxicity on muscle regeneration. Using a BaCl2-induced damage model, we find that RNA toxicity leads to decreased expression of PAX7, and decreased numbers of satellite cells, the stem cells of adult skeletal muscle (also known as MuSCs). This is associated with a delay in regenerative response, a lack of muscle fiber maturation and an inability to maintain a normal number of satellite cells. Repeated muscle damage also elicited key aspects of muscular dystrophy, including fat droplet deposition and increased fibrosis, and the results represent one of the first times to model these classic markers of dystrophic changes in the skeletal muscles of a mouse model of RNA toxicity. Using a ligand-conjugated antisense (LICA) oligonucleotide ASO targeting DMPK sequences for the first time in a mouse model of RNA toxicity in DM1, we find that treatment with IONIS 877864, which targets the DMPK 3'UTR mRNA, is efficacious in correcting the defects in regenerative response and the reductions in satellite cell numbers caused by RNA toxicity. These results demonstrate the possibilities for therapeutic interventions to mitigate the muscular dystrophy associated with RNA toxicity in DM1.


Assuntos
Desenvolvimento Muscular/genética , Distrofia Miotônica/genética , Miotonina Proteína Quinase/genética , Oligonucleotídeos Antissenso/farmacologia , RNA/genética , Animais , Modelos Animais de Doenças , Humanos , Camundongos , Músculo Esquelético/crescimento & desenvolvimento , Músculo Esquelético/metabolismo , Músculo Esquelético/patologia , Distrofia Miotônica/patologia , Miotonina Proteína Quinase/antagonistas & inibidores , RNA/toxicidade , RNA Mensageiro/genética , Regeneração/genética
4.
Hum Reprod ; 38(6): 1047-1059, 2023 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-37075311

RESUMO

STUDY QUESTION: How does an altered maternal hormonal environment, such as that seen during superovulation with gonadotropins in ART, impact human uterine immune cell distribution and function during the window of implantation? SUMMARY ANSWER: Hormonal stimulation with gonadotropins alters abundance of maternal immune cells including uterine natural killer (uNK) cells and reduces uNK cell ability to promote extravillous trophoblast (EVT) invasion. WHAT IS KNOWN ALREADY: An altered maternal hormonal environment, seen following ART, can lead to increased risk for adverse perinatal outcomes associated with disordered placentation. Maternal immune cells play an essential role in invasion of EVTs, a process required for proper establishment of the placenta, and adverse perinatal outcomes have been associated with altered immune cell populations. How ART impacts maternal immune cells and whether this can in turn affect implantation and placentation in humans remain unknown. STUDY DESIGN, SIZE, DURATION: A prospective cohort study was carried out between 2018 and 2021 on 51 subjects: 20 from natural cycles 8 days after LH surge; and 31 from stimulated IVF cycles 7 days after egg retrieval. PARTICIPANTS/MATERIALS, SETTING, METHODS: Endometrial biopsies and peripheral blood samples were collected during the window of implantation in subjects with regular menstrual cycles or undergoing superovulation. Serum estradiol and progesterone levels were measured by chemiluminescent competitive immunoassay. Immune cell populations in blood and endometrium were analyzed using flow cytometry. uNK cells were purified using fluorescence-activated cell sorting and were subjected to RNA sequencing (RNA-seq). Functional changes in uNK cells due to hormonal stimulation were evaluated using the implantation-on-a-chip (IOC) device, a novel bioengineered platform using human primary cells that mimics early processes that occur during pregnancy in a physiologically relevant manner. Unpaired t-tests, one-way ANOVA, and pairwise multiple comparison tests were used to statistically evaluate differences. MAIN RESULTS AND THE ROLE OF CHANCE: Baseline characteristics were comparable for both groups. As expected, serum estradiol levels on the day of biopsy were significantly higher in stimulated (superovulated) patients (P = 0.0005). In the setting of superovulation, we found an endometrium-specific reduction in the density of bulk CD56+ uNK cells (P < 0.05), as well as in the uNK3 subpopulation (P = 0.025) specifically (CD103+ NK cells). In stimulated samples, we also found that the proportion of endometrial B cells was increased (P < 0.0001). Our findings were specific to the endometrium and not seen in peripheral blood. On the IOC device, uNK cells from naturally cycling secretory endometrium promote EVT invasion (P = 0.03). However, uNK cells from hormonally stimulated endometrium were unable to significantly promote EVT invasion, as measured by area of invasion, depth of invasion, and number of invaded EVTs by area. Bulk RNA-seq of sorted uNK cells from stimulated and unstimulated endometrium revealed changes in signaling pathways associated with immune cell trafficking/movement and inflammation. LIMITATIONS, REASONS FOR CAUTION: Patient numbers utilized for the study were low but were enough to identify significant overall population differences in select immune cell types. With additional power and deeper immune phenotyping, we may detect additional differences in immune cell composition of blood and endometrium in the setting of hormonal stimulation. Flow cytometry was performed on targeted immune cell populations that have shown involvement in early pregnancy. A more unbiased approach might identify changes in novel maternal immune cells not investigated in this study. We performed RNA-seq only on uNK cells, which demonstrated differences in gene expression. Ovarian stimulation may also impact gene expression and function of other subsets of immune cells, as well as other cell types within the endometrium. Finally, the IOC device, while a major improvement over existing in vitro methods to study early pregnancy, does not include all possible maternal cells present during early pregnancy, which could impact functional effects seen. Immune cells other than uNK cells may impact invasion of EVTs in vitro and in vivo, though these remain to be tested. WIDER IMPLICATIONS OF THE FINDINGS: These findings demonstrate that hormonal stimulation affects the distribution of uNK cells during the implantation window and reduces the proinvasive effects of uNK cells during early pregnancy. Our results provide a potential mechanism by which fresh IVF cycles may increase risk of disorders of placentation, previously linked to adverse perinatal outcomes. STUDY FUNDING/COMPETING INTEREST(S): Research reported in this publication was supported by the University of Pennsylvania University Research Funding (to M.M.), the Eunice Kennedy Shriver National Institute of Child Health and Human Development (P50HD068157 to M.M., S.S., and S.M.), National Center for Advancing Translational Sciences of the National Institutes of Health (TL1TR001880 to J.K.), the Institute for Translational Medicine and Therapeutics of the Perelman School of Medicine at the University of Pennsylvania, the Children's Hospital of Philadelphia Research Institute (to S.M.G.), and the National Institute of Allergy and Infectious Diseases (K08AI151265 to S.M.G.). The content is solely the responsibility of the authors and does not necessarily represent the official views of the National Institutes of Health. All authors declare no conflict of interest. TRIAL REGISTRATION NUMBER: N/A.


Assuntos
Implantação do Embrião , Útero , Gravidez , Feminino , Criança , Humanos , Estudos Prospectivos , Útero/metabolismo , Endométrio , Células Matadoras Naturais , Estradiol/metabolismo
5.
Hum Mol Genet ; 29(9): 1440-1453, 2020 06 03.
Artigo em Inglês | MEDLINE | ID: mdl-32242217

RESUMO

Myotonic dystrophy type 1 (DM1), the most common adult muscular dystrophy, is an autosomal dominant disorder caused by an expansion of a (CTG)n tract within the 3' untranslated region (3'UTR) of the dystrophia myotonica protein kinase (DMPK) gene. Mutant DMPK mRNAs are toxic, present in nuclear RNA foci and correlated with a plethora of RNA splicing defects. Cardinal features of DM1 are myotonia and cardiac conduction abnormalities. Using transgenic mice, we have demonstrated that expression of the mutant DMPK 3'UTR is sufficient to elicit these features of DM1. Here, using these mice, we present a study of systemic treatment with an antisense oligonucleotide (ASO) (ISIS 486178) targeted to a non-CUG sequence within the 3'UTR of DMPK. RNA foci and DMPK 3'UTR mRNA levels were reduced in both the heart and skeletal muscles. This correlated with improvements in several splicing defects in skeletal and cardiac muscles. The treatment reduced myotonia and this correlated with increased Clcn1 expression. Furthermore, functional testing showed improvements in treadmill running. Of note, we demonstrate that the ASO treatment reversed the cardiac conduction abnormalities, and this correlated with restoration of Gja5 (connexin 40) expression in the heart. This is the first time that an ASO targeting a non-CUG sequence within the DMPK 3'UTR has demonstrated benefit on the key DM1 phenotypes of myotonia and cardiac conduction defects. Our data also shows for the first time that ASOs may be a viable option for treating cardiac pathology in DM1.


Assuntos
Canais de Cloreto/genética , Conexinas/genética , Distrofia Miotônica/genética , Miotonina Proteína Quinase/genética , Oligonucleotídeos Antissenso/farmacologia , Regiões 3' não Traduzidas/genética , Animais , Núcleo Celular/genética , Modelos Animais de Doenças , Humanos , Camundongos , Camundongos Transgênicos/genética , Distrofia Miotônica/patologia , Distrofia Miotônica/terapia , Miotonina Proteína Quinase/farmacologia , Oligonucleotídeos/genética , Oligonucleotídeos/farmacologia , Oligonucleotídeos Antissenso/efeitos adversos , Oligonucleotídeos Antissenso/genética , RNA Mensageiro/genética , Expansão das Repetições de Trinucleotídeos/genética , Proteína alfa-5 de Junções Comunicantes
6.
Hum Mol Genet ; 28(14): 2330-2338, 2019 07 15.
Artigo em Inglês | MEDLINE | ID: mdl-30997488

RESUMO

Myotonic dystrophy type 1 (DM1) is caused by an expanded (CTG)n tract in the 3'UTR of the DM protein kinase (DMPK) gene. The RNA transcripts produced from the expanded allele sequester or alter the function of RNA-binding proteins (MBNL1, CUGBP1, etc.). The sequestration of MBNL1 results in RNA-splicing defects that contribute to disease. Overexpression of MBNL1 in skeletal muscle has been shown to rescue some of the DM1 features in a mouse model and has been proposed as a therapeutic strategy for DM1. Here, we sought to confirm if overexpression of MBNL1 rescues the phenotypes in a different mouse model of RNA toxicity. Using an inducible mouse model of RNA toxicity in which expression of the mutant DMPK 3'UTR results in RNA foci formation, MBNL1 sequestration, splicing defects, myotonia and cardiac conduction defects, we find that MBNL1 overexpression did not rescue skeletal muscle function nor beneficially affect cardiac conduction. Surprisingly, MBNL1 overexpression also did not rescue myotonia, though variable rescue of Clcn1 splicing and other splicing defects was seen. Additionally, contrary to the previous study, we found evidence for increased muscle histopathology with MBNL1 overexpression. Overall, we did not find evidence for beneficial effects from overexpression of MBNL1 as a means to correct RNA toxicity mediated by mRNAs containing an expanded DMPK 3'UTR.


Assuntos
Músculo Esquelético/metabolismo , Distrofia Miotônica/genética , Proteínas de Ligação a RNA/genética , Regiões 3' não Traduzidas , Processamento Alternativo , Animais , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Modelos Animais de Doenças , Humanos , Camundongos , Camundongos Transgênicos , Músculo Esquelético/citologia , Distrofia Miotônica/metabolismo , Miotonina Proteína Quinase/genética , Fenótipo , Splicing de RNA , RNA Mensageiro/genética , Proteínas de Ligação a RNA/metabolismo
7.
Int J Mol Sci ; 22(21)2021 Nov 02.
Artigo em Inglês | MEDLINE | ID: mdl-34769305

RESUMO

Myotonic dystrophy type 1 (DM1), the most common muscular dystrophy affecting adults and children, is a multi-systemic disorder affecting skeletal, cardiac, and smooth muscles as well as neurologic, endocrine and other systems. This review is on the cardiac pathology associated with DM1. The heart is one of the primary organs affected in DM1. Cardiac conduction defects are seen in up to 75% of adult DM1 cases and sudden death due to cardiac arrhythmias is one of the most common causes of death in DM1. Unfortunately, the pathogenesis of cardiac manifestations in DM1 is ill defined. In this review, we provide an overview of the history of cardiac studies in DM1, clinical manifestations, and pathology of the heart in DM1. This is followed by a discussion of emerging data about the utility of cardiac magnetic resonance imaging (CMR) as a biomarker for cardiac disease in DM1, and ends with a discussion on models of cardiac RNA toxicity in DM1 and recent clinical guidelines for cardiologic management of individuals with DM1.


Assuntos
Músculos/patologia , Distrofia Miotônica/etiologia , Distrofia Miotônica/patologia , Animais , Humanos , Distrofia Miotônica/classificação
8.
Hum Mol Genet ; 24(1): 251-64, 2015 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-25168381

RESUMO

RNA toxicity is implicated in a number of disorders; especially those associated with expanded repeat sequences, such as myotonic dystrophy (DM1). Previously, we have shown increased NKX2-5 expression in RNA toxicity associated with DM1. Here, we investigate the relationship between NKX2-5 expression and muscle pathology due to RNA toxicity. In skeletal muscle from mice with RNA toxicity and individuals with DM1, expression of Nkx2-5 or NKX2-5 and its downstream targets are significantly correlated with severity of histopathology. Using C2C12 myoblasts, we show that over-expression of NKX2-5 or mutant DMPK 3'UTR results in myogenic differentiation defects, which can be rescued by knockdown of Nkx2-5, despite continued toxic RNA expression. Furthermore, in a mouse model of NKX2-5 over-expression, we find defects in muscle regeneration after induced damage, similar to those seen in mice with RNA toxicity. Using mouse models of Nkx2-5 over-expression and depletion, we find that NKX2-5 levels modify disease phenotypes in mice with RNA toxicity.


Assuntos
Proteínas de Homeodomínio/genética , Músculo Esquelético/patologia , Distrofias Musculares/genética , RNA/toxicidade , Fatores de Transcrição/genética , Animais , Diferenciação Celular , Linhagem Celular , Modelos Animais de Doenças , Regulação da Expressão Gênica , Técnicas de Inativação de Genes , Genes Modificadores , Proteína Homeobox Nkx-2.5 , Proteínas de Homeodomínio/metabolismo , Humanos , Camundongos , Camundongos Transgênicos , Distrofias Musculares/metabolismo , Distrofias Musculares/patologia , Miotonina Proteína Quinase/genética , Fatores de Transcrição/metabolismo
9.
Hum Mol Genet ; 24(7): 2035-48, 2015 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-25504044

RESUMO

Myotonic dystrophy type 1 (DM1), the most prevalent muscular dystrophy in adults, is characterized by progressive muscle wasting and multi-systemic complications. DM1 is the prototype for disorders caused by RNA toxicity. Currently, no therapies exist. Here, we identify that fibroblast growth factor-inducible 14 (Fn14), a member of the tumor necrosis factor receptor super-family, is induced in skeletal muscles and hearts of mouse models of RNA toxicity and in tissues from DM1 patients, and that its expression correlates with severity of muscle pathology. This is associated with downstream signaling through the NF-κB pathways. In mice with RNA toxicity, genetic deletion of Fn14 results in reduced muscle pathology and better function. Importantly, blocking TWEAK/Fn14 signaling with an anti-TWEAK antibody likewise improves muscle histopathology and functional outcomes in affected mice. These results reveal new avenues for therapeutic development and provide proof of concept for a novel therapeutic target for which clinically available therapy exists to potentially treat muscular dystrophy in DM1.


Assuntos
Distrofia Miotônica/metabolismo , Receptores do Fator de Necrose Tumoral/metabolismo , Fatores de Necrose Tumoral/metabolismo , Adulto , Animais , Anticorpos/administração & dosagem , Citocina TWEAK , Modelos Animais de Doenças , Feminino , Humanos , Masculino , Camundongos , Camundongos Knockout , Pessoa de Meia-Idade , Distrofia Miotônica/tratamento farmacológico , Distrofia Miotônica/genética , NF-kappa B/genética , NF-kappa B/metabolismo , Receptores do Fator de Necrose Tumoral/antagonistas & inibidores , Receptores do Fator de Necrose Tumoral/genética , Transdução de Sinais/efeitos dos fármacos , Receptor de TWEAK , Inibidores do Fator de Necrose Tumoral , Fatores de Necrose Tumoral/genética
10.
Crit Care Med ; 45(2): e132-e137, 2017 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-27632677

RESUMO

OBJECTIVE: To compare usage patterns and outcomes of a nurse practitioner-staffed medical ICU and a resident-staffed physician medical ICU. DESIGN: Retrospective chart review of 1,157 medical ICU admissions from March 2012 to February 2013. SETTING: Large urban academic university hospital. SUBJECTS: One thousand one hundred fifty-seven consecutive medical ICU admissions including 221 nurse practitioner-staffed medical ICU admissions (19.1%) and 936 resident-staffed medical ICU admissions (80.9%). INTERVENTIONS: None. MEASUREMENTS AND MAIN RESULTS: Data obtained included age, gender, race, medical ICU admitting diagnosis, location at time of ICU transfer, code status at ICU admission, and severity of illness using both Acute Physiology and Chronic Health Evaluation II scores and a model for relative expected mortality. Primary outcomes compared included ICU mortality, in-hospital mortality, medical ICU length of stay, and post-ICU discharge hospital length of stay. Patients admitted to the nurse practitioner-staffed medical ICU were older (63 ± 16.5 vs 59.2 ± 16.9 yr for resident-staffed medical ICU; p = 0.019), more likely to be transferred from an inpatient unit (52.0% vs 40.0% for the resident-staffed medical ICU; p = 0.002), and had a higher severity of illness by relative expected mortality (21.3 % vs 17.2 % for the resident-staffed medical ICU; p = 0.001). There were no differences among primary outcomes except for medical ICU length of stay (nurse practitioner-resident-staffed 7.9 ± 7.5 d vs resident-staffed medical ICU 5.6 ± 6.5 d; p = 0.0001). Post-hospital discharge to nonhome location was also significantly higher in the nurse practitioner-ICU (31.7% in nurse practitioner-staffed medical ICU vs 23.9% in resident-staffed medical ICU; p = 0.24). CONCLUSIONS: We found no difference in mortality between an nurse practitioner-staffed medical ICU and a resident-staffed physician medical ICU. Our study adds further evidence that advanced practice providers can render safe and effective ICU care.


Assuntos
Unidades de Terapia Intensiva/estatística & dados numéricos , Internato e Residência/estatística & dados numéricos , Profissionais de Enfermagem/estatística & dados numéricos , Centros Médicos Acadêmicos/estatística & dados numéricos , Adulto , Idoso , Idoso de 80 Anos ou mais , Feminino , Mortalidade Hospitalar , Humanos , Tempo de Internação/estatística & dados numéricos , Masculino , Pessoa de Meia-Idade , Estudos Retrospectivos , Índice de Gravidade de Doença , Recursos Humanos
11.
BMC Biol ; 14: 47, 2016 06 17.
Artigo em Inglês | MEDLINE | ID: mdl-27317311

RESUMO

BACKGROUND: The epithelial to mesenchymal transition (EMT) has been implicated in metastasis and therapy resistance of carcinomas and can endow cancer cells with cancer stem cell (CSC) properties. The ability to detect cancer cells that are undergoing or have completed EMT has typically relied on the expression of cell surface antigens that correlate with an EMT/CSC phenotype. Alternatively these cells may be permanently marked through Cre-mediated recombination or through immunostaining of fixed cells. The EMT process is dynamic, and these existing methods cannot reveal such changes within live cells. The development of fluorescent sensors that mirror the dynamic EMT state by following the expression of bona fide EMT regulators in live cells would provide a valuable new tool for characterizing EMT. In addition, these sensors will allow direct observation of cellular plasticity with respect to the epithelial/mesenchymal state to enable more effective studies of EMT in cancer and development. RESULTS: We generated a lentiviral-based, dual fluorescent reporter system, designated as the Z-cad dual sensor, comprising destabilized green fluorescent protein containing the ZEB1 3' UTR and red fluorescent protein driven by the E-cadherin (CDH1) promoter. Using this sensor, we robustly detected EMT and mesenchymal to epithelial transition (MET) in breast cancer cells by flow cytometry and fluorescence microscopy. Importantly, we observed dynamic changes in cellular populations undergoing MET. Additionally, we used the Z-cad sensor to identify and isolate minor subpopulations of cells displaying mesenchymal properties within a population comprising predominately epithelial-like cells. The Z-cad dual sensor identified cells with CSC-like properties more effectively than either the ZEB1 3' UTR or E-cadherin sensor alone. CONCLUSIONS: The Z-cad dual sensor effectively reports the activities of two factors critical in determining the epithelial/mesenchymal state of carcinoma cells. The ability of this stably integrating dual sensor system to detect dynamic fluctuations between these two states through live cell imaging offers a significant improvement over existing methods and helps facilitate the study of EMT/MET plasticity in response to different stimuli and in cancer pathogenesis. Finally, the versatile Z-cad sensor can be adapted to a variety of in vitro or in vivo systems to elucidate whether EMT/MET contributes to normal and disease phenotypes.


Assuntos
Técnicas Biossensoriais , Células Epiteliais/citologia , Transição Epitelial-Mesenquimal , Células-Tronco Mesenquimais/citologia , Animais , Antígenos CD , Caderinas/genética , Linhagem Celular Tumoral , Proteínas de Fluorescência Verde/genética , Proteínas de Fluorescência Verde/metabolismo , Humanos , Proteínas Luminescentes/genética , Proteínas Luminescentes/metabolismo , Camundongos , Regiões Promotoras Genéticas , Fator de Crescimento Transformador beta1/farmacologia , Homeobox 1 de Ligação a E-box em Dedo de Zinco/genética , Proteína Vermelha Fluorescente
12.
Hum Mol Genet ; 23(2): 293-302, 2014 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-24001600

RESUMO

Myotonic dystrophy type 1 (DM1), the most common form of adult-onset muscular dystrophy, is caused by an expanded (CTG)n repeat in the 3' untranslated region of the DM protein kinase (DMPK) gene. The toxic RNA transcripts produced from the mutant allele alter the function of RNA-binding proteins leading to the functional depletion of muscleblind-like (MBNL) proteins and an increase in steady state levels of CUG-BP1 (CUGBP-ETR-3 like factor 1, CELF1). The role of increased CELF1 in DM1 pathogenesis is well studied using genetically engineered mouse models. Also, as a potential therapeutic strategy, the benefits of increasing MBNL1 expression have recently been reported. However, the effect of reduction of CELF1 is not yet clear. In this study, we generated CELF1 knockout mice, which also carry an inducible toxic RNA transgene to test the effects of CELF1 reduction in RNA toxicity. We found that the absence of CELF1 did not correct splicing defects. It did however mitigate the increase in translational targets of CELF1 (MEF2A and C/EBPß). Notably, we found that loss of CELF1 prevented deterioration of muscle function by the toxic RNA, and resulted in better muscle histopathology. These data suggest that while reduction of CELF1 may be of limited benefit with respect to DM1-associated spliceopathy, it may be beneficial to the muscular dystrophy associated with RNA toxicity.


Assuntos
Fatores de Transcrição MEF2/metabolismo , Músculo Esquelético/patologia , Distrofia Miotônica/genética , RNA Mensageiro/genética , Proteínas de Ligação a RNA/genética , Processamento Alternativo , Animais , Proteína beta Intensificadora de Ligação a CCAAT/genética , Proteína beta Intensificadora de Ligação a CCAAT/metabolismo , Proteínas CELF1 , Modelos Animais de Doenças , Feminino , Humanos , Fatores de Transcrição MEF2/genética , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Pessoa de Meia-Idade , Distrofia Miotônica/patologia , RNA Mensageiro/metabolismo , Proteínas de Ligação a RNA/metabolismo , Transgenes
13.
Respir Res ; 17(1): 93, 2016 07 26.
Artigo em Inglês | MEDLINE | ID: mdl-27460362

RESUMO

BACKGROUND: Sarcoidosis is a multisystem immuno-inflammatory disorder of unknown etiology that most commonly involves the lungs. We hypothesized that an unbiased approach to identify pathways activated in bronchoalveolar lavage (BAL) cells can shed light on the pathogenesis of this complex disease. METHODS: We recruited 15 patients with various stages of sarcoidosis and 12 healthy controls. All subjects underwent bronchoscopy with lavage. For each subject, total RNA was extracted from BAL cells and hybridized to an Affymetrix U133A microarray. Rigorous statistical methods were applied to identify differential gene expression between subjects with sarcoidosis vs. CONTROLS: To better elucidate pathways differentially activated between these groups, we integrated network and gene set enrichment analyses of BAL cell transcriptional profiles. RESULTS: Sarcoidosis patients were either non-smokers or former smokers, all had lung involvement and only two were on systemic prednisone. Healthy controls were all non-smokers. Comparison of BAL cell gene expression between sarcoidosis and healthy subjects revealed over 1500 differentially expressed genes. Several previously described immune mediators, such as interferon gamma, were upregulated in the sarcoidosis subjects. Using an integrative computational approach we constructed a modular network of over 80 gene sets that were highly enriched in patients with sarcoidosis. Many of these pathways mapped to inflammatory and immune-related processes including adaptive immunity, T-cell signaling, graft vs. host disease, interleukin 12, 23 and 17 signaling. Additionally, we uncovered a close association between the proteasome machinery and adaptive immunity, highlighting a potentially important and targetable relationship in the pathobiology of sarcoidosis. CONCLUSIONS: BAL cells in sarcoidosis are characterized by enrichment of distinct transcriptional programs involved in immunity and proteasomal processes. Our findings add to the growing evidence implicating alveolar resident immune effector cells in the pathogenesis of sarcoidosis and identify specific pathways whose activation may modulate disease progression.


Assuntos
Líquido da Lavagem Broncoalveolar/citologia , Regulação da Expressão Gênica/genética , Sarcoidose Pulmonar/genética , Sarcoidose Pulmonar/metabolismo , Adulto , Idoso , Broncoscopia , Contagem de Células , Citocinas/metabolismo , Feminino , Redes Reguladoras de Genes/genética , Humanos , Imunidade/genética , Masculino , Análise em Microsséries , Pessoa de Meia-Idade , Complexo de Endopeptidases do Proteassoma/genética , RNA/biossíntese , RNA/isolamento & purificação , Sarcoidose Pulmonar/imunologia , Fumar/genética
15.
Nat Genet ; 38(9): 1066-70, 2006 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-16878132

RESUMO

Myotonic dystrophy (DM1), the most common muscular dystrophy in adults, is caused by an expanded (CTG)n tract in the 3' UTR of the gene encoding myotonic dystrophy protein kinase (DMPK), which results in nuclear entrapment of the 'toxic' mutant RNA and interacting RNA-binding proteins (such as MBNL1) in ribonuclear inclusions. It is unclear if therapy aimed at eliminating the toxin would be beneficial. To address this, we generated transgenic mice expressing the DMPK 3' UTR as part of an inducible RNA transcript encoding green fluorescent protein (GFP). We were surprised to find that mice overexpressing a normal DMPK 3' UTR mRNA reproduced cardinal features of myotonic dystrophy, including myotonia, cardiac conduction abnormalities, histopathology and RNA splicing defects in the absence of detectable nuclear inclusions. However, we observed increased levels of CUG-binding protein (CUG-BP1) in skeletal muscle, as seen in individuals with DM1. Notably, these effects were reversible in both mature skeletal and cardiac muscles by silencing transgene expression. These results represent the first in vivo proof of principle for a therapeutic strategy for treatment of myotonic dystrophy by ablating or silencing expression of the toxic RNA molecules.


Assuntos
Miocárdio/metabolismo , Miotonia/fisiopatologia , Distrofia Miotônica/genética , Distrofia Miotônica/fisiopatologia , RNA/toxicidade , Regiões 3' não Traduzidas , Animais , Modelos Animais de Doenças , Eletrocardiografia , Eletromiografia , Inativação Gênica , Proteínas de Fluorescência Verde/metabolismo , Imuno-Histoquímica , Hibridização in Situ Fluorescente , Camundongos , Camundongos Transgênicos , Músculo Esquelético/química , Músculo Esquelético/metabolismo , Músculo Esquelético/fisiopatologia , Miocárdio/química , Distrofia Miotônica/etiologia , Distrofia Miotônica/metabolismo , Miotonina Proteína Quinase , Ligação Proteica , Proteínas Serina-Treonina Quinases/genética , Proteínas Serina-Treonina Quinases/metabolismo , RNA Mensageiro/análise , Transgenes , Expansão das Repetições de Trinucleotídeos
16.
Lung ; 192(5): 639-48, 2014 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-25108403

RESUMO

Lung cancer is the most common and lethal malignancy in the world. The landmark National lung screening trial (NLST) showed a 20% relative reduction in mortality in high-risk individuals with screening low-dose computed tomography. However, the poor specificity and low prevalence of lung cancer in the NLST provide major limitations to its widespread use. Furthermore, a lung nodule on CT scan requires a nuanced and individualized approach towards management. In this regard, advances in high through-put technology (molecular diagnostics, multi-gene chips, proteomics, and bronchoscopic techniques) have led to discovery of lung cancer biomarkers that have shown potential to complement the current screening standards. Early detection of lung cancer can be achieved by analysis of biomarkers from tissue samples within the respiratory tract such as sputum, saliva, nasal/bronchial airway epithelial cells and exhaled breath condensate or through peripheral biofluids such as blood, serum and urine. Autofluorescence bronchoscopy has been employed in research setting to identify pre-invasive lesions not identified on CT scan. Although these modalities are not yet commercially available in clinic setting, they will be available in the near future and clinicians who care for patients with lung cancer should be aware. In this review, we present up-to-date state of biomarker development, discuss their clinical relevance and predict their future role in lung cancer management.


Assuntos
Biomarcadores Tumorais/metabolismo , Detecção Precoce de Câncer/métodos , Neoplasias Pulmonares/diagnóstico por imagem , Neoplasias Pulmonares/metabolismo , Pulmão/diagnóstico por imagem , Pulmão/metabolismo , Doses de Radiação , Tomografia Computadorizada por Raios X , Biomarcadores Tumorais/genética , Humanos , Pulmão/patologia , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/patologia , Neoplasias Pulmonares/terapia , Valor Preditivo dos Testes , Prognóstico
17.
BMC Immunol ; 14: 41, 2013 Sep 17.
Artigo em Inglês | MEDLINE | ID: mdl-24044676

RESUMO

BACKGROUND: Activin A is a pleiotrophic regulatory cytokine, the ablation of which is neonatal lethal. Healthy human alveolar macrophages (AMs) constitutively express activin A, but AMs of patients with pulmonary alveolar proteinosis (PAP) are deficient in activin A. PAP is an autoimmune lung disease characterized by neutralizing autoantibodies to Granulocyte-Macrophage Colony Stimulating Factor (GM-CSF). Activin A can be stimulated, however, by GM-CSF treatment of AMs in vitro. To further explore pulmonary activin A regulation, we examined AMs in bronchoalveolar lavage (BAL) from wild-type C57BL/6 compared to GM-CSF knockout mice which exhibit a PAP-like histopathology. Both human PAP and mouse GM-CSF knockout AMs are deficient in the transcription factor, peroxisome proliferator activated receptor gamma (PPARγ). RESULTS: In sharp contrast to human PAP, activin A mRNA was elevated in mouse GM-CSF knockout AMs, and activin A protein was increased in BAL fluid. Investigation of potential causative factors for activin A upregulation revealed intrinsic overexpression of IFNγ, a potent inducer of the M1 macrophage phenotype, in GM-CSF knockout BAL cells. IFNγ mRNA was not elevated in PAP BAL cells. In vitro studies confirmed that IFNγ stimulated activin A in wild-type AMs while antibody to IFNγ reduced activin A in GM-CSF knockout AMs. Both IFNγ and Activin A were also reduced in GM-CSF knockout mice in vivo after intratracheal instillation of lentivirus-PPARγ compared to control lentivirus vector. Examination of other M1 markers in GM-CSF knockout mice indicated intrinsic elevation of the IFNγ-regulated gene, inducible Nitrogen Oxide Synthetase (iNOS), CCL5, and interleukin (IL)-6 compared to wild-type. The M2 markers, IL-10 and CCL2 were also intrinsically elevated. CONCLUSIONS: Data point to IFNγ as the primary upregulator of activin A in GM-CSF knockout mice which in addition, exhibit a unique mix of M1-M2 macrophage phenotypes.


Assuntos
Fator Estimulador de Colônias de Granulócitos e Macrófagos/deficiência , Macrófagos Alveolares/metabolismo , Proteinose Alveolar Pulmonar/metabolismo , Ativinas/genética , Ativinas/metabolismo , Animais , Líquido da Lavagem Broncoalveolar/citologia , Células Cultivadas , Quimiocina CCL5/genética , Quimiocina CCL5/metabolismo , Expressão Gênica/efeitos dos fármacos , Expressão Gênica/imunologia , Fator Estimulador de Colônias de Granulócitos e Macrófagos/genética , Humanos , Imuno-Histoquímica , Interferon gama/genética , Interferon gama/metabolismo , Interferon gama/farmacologia , Interleucina-6/genética , Interleucina-6/metabolismo , Macrófagos Alveolares/classificação , Macrófagos Alveolares/efeitos dos fármacos , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Óxido Nítrico Sintase Tipo II/genética , Óxido Nítrico Sintase Tipo II/metabolismo , PPAR gama/genética , PPAR gama/metabolismo , Proteinose Alveolar Pulmonar/genética , Reação em Cadeia da Polimerase Via Transcriptase Reversa
18.
Int J Mol Sci ; 14(12): 23858-71, 2013 Dec 06.
Artigo em Inglês | MEDLINE | ID: mdl-24322444

RESUMO

Sarcoidosis, a chronic granulomatous disease of unknown cause, has been linked to several environmental risk factors, among which are some that may favor carbon nanotube formation. Using gene array data, we initially observed that bronchoalveolar lavage (BAL) cells from sarcoidosis patients displayed elevated mRNA of the transcription factor, Twist1, among many M1-associated genes compared to healthy controls. Based on this observation we hypothesized that Twist1 mRNA and protein expression might become elevated in alveolar macrophages from animals bearing granulomas induced by carbon nanotube instillation. To address this hypothesis, wild-type and macrophage-specific peroxisome proliferator-activated receptor gamma (PPARγ) knock out mice were given oropharyngeal instillation of multiwall carbon nanotubes (MWCNT). BAL cells obtained 60 days later exhibited significantly elevated Twist1 mRNA expression in granuloma-bearing wild-type or PPARγ knock out alveolar macrophages compared to sham controls. Overall, Twist1 expression levels in PPARγ knock out mice were higher than those of wild-type. Concurrently, BAL cells obtained from sarcoidosis patients and healthy controls validated gene array data: qPCR and protein analysis showed significantly elevated Twist1 in sarcoidosis compared to healthy controls. In vitro studies of alveolar macrophages from healthy controls indicated that Twist1 was inducible by classical (M1) macrophage activation stimuli (LPS, TNFα) but not by IL-4, an inducer of alternative (M2) macrophage activation. Findings suggest that Twist1 represents a PPARγ-sensitive alveolar macrophage M1 biomarker which is induced by inflammatory granulomatous disease in the MWCNT model and in human sarcoidosis.


Assuntos
Macrófagos Alveolares/metabolismo , Proteína 1 Relacionada a Twist/metabolismo , Adulto , Animais , Líquido da Lavagem Broncoalveolar/citologia , Feminino , Humanos , Ativação de Macrófagos , Macrófagos Alveolares/citologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Pessoa de Meia-Idade , Nanotubos de Carbono/química , Nanotubos de Carbono/toxicidade , PPAR gama/deficiência , PPAR gama/genética , PPAR gama/metabolismo , RNA Mensageiro/metabolismo , Sarcoidose Pulmonar/induzido quimicamente , Sarcoidose Pulmonar/metabolismo , Sarcoidose Pulmonar/patologia , Proteína 1 Relacionada a Twist/genética , Regulação para Cima
19.
Cureus ; 15(10): e47495, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-38021789

RESUMO

Background and aims Enamel demineralization and white spot lesions (WSLs) during orthodontic treatment have always been a challenge to orthodontists. The advancement of nanotechnology has paved the way for the incorporation of bioactive compounds in orthodontic materials especially orthodontic composites for prevention and management of WSLs. The present study aims to prepare, characterize, and then incorporate copper and strontium doped nanohydroxyapatite into orthodontic composite material and test its antibacterial efficacy. Materials and methods The present in vitro study involved the preparation of the strontium and copper co-substituted hydroxyapatite (SrCuHA) nanoparticles (Nps) using the sol-gel method. The prepared Nps were characterized using scanning electron microscopy (SEM), energy-dispersive X-ray analysis (EDAX), and Fourier transform infrared spectroscopy (FTIR). The Nps were incorporated into a commercially available orthodontic composite. The antimicrobial properties of the SrCuHA Nps-incorporated composite were tested using the Agar well diffusion method against Staphylococcus aureus(S. aureus), Streptococcus mutans (S. mutans), and Escherichia coli (E. coli). Results The SrCuHA Nps were successfully prepared. EDAX, FTIR, and SEM analyses revealed the successful formation of the Nps. The SrCuHA-incorporated orthodontic composite at a higher concentration of 40 µl showed the maximum zone of inhibition (ZOI) against S. mutans. The control group showed the maximum ZOI against E. coli and the SrCuHA Nps-incorporated composite at 20 µl showed the maximum inhibition against S. aureus. Conclusion In the present study, successful preparation of SrCuHA Nps followed by incorporation in the orthodontic adhesive was done. The prepared nanoparticle was characterized and the SrCuHA Nps-incorporated orthodontic composite demonstrated comparable ZOI against S. mutans to the control.

20.
Curr Protoc ; 3(2): e689, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36821783

RESUMO

Förster Resonance Energy Transfer (FRET) is a great tool for cell biologists to investigate molecular interactions in live specimens. FRET is a distance-dependent phenomenon which can detect molecular interactions at distances between 1-10 nm. Several FRET approaches are reported in the literature for live and fixed cells to study protein-protein interactions; this protocol provides details of acceptor photobleaching as a FRET method to study RNA-Protein interactions. Cy3-labeled RNA foci (FRET acceptors) are photobleached at the intra-cellular site of interest (the nuclei) and the intensity of the EGFP-tagged proteins (FRET donors) at that same site are measured pre- and post- photobleaching. In principle, FRET is detected if the intensity of EGFP increases after photobleaching of Cy3. This protocol describes necessary steps and appropriate controls to conduct FRET measurements by the acceptor photobleaching method. Successful applications of this protocol will provide data to support the conclusion that EGFP-labeled proteins directly interact with Cy3-labeled RNA at the site of photobleaching. © 2023 The Authors. Current Protocols published by Wiley Periodicals LLC. Basic Protocol: FRET in fixed cells Alternate Protocol: FRET in live cells.


Assuntos
Transferência Ressonante de Energia de Fluorescência , Transferência Ressonante de Energia de Fluorescência/métodos , Fotodegradação , Fenômenos Biofísicos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA