Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Assunto da revista
País de afiliação
Intervalo de ano de publicação
1.
J Fluoresc ; 2024 Jul 19.
Artigo em Inglês | MEDLINE | ID: mdl-39028448

RESUMO

Particle extraction via the liquid-liquid interface (PELLI) method has been utilized to produce Di-(2-ethylhexyl) phosphate (DEHP) coated MnO2 fluorescent nanoprobe denoted as MnO2@DEHP for the selective detection of Fe3+ ions. The synthesized MnO2@DEHP nanoprobe was characterized by various instrumental techniques such as FT-IR, PXRD, TEM, EDAX, HRTEM, DLS, and XPS. Since the high concentration of Fe3+ in waste water leads to water pollution, which in turn affects the ecosystem, and causes severe health hazards. Therefore, accurate detection of Fe3+ ions in the aqueous systems is essential as they are involved in various chemical and biological processes in living things. Here, the synthesized MnO2@DEHP nanoprobe selectively detects Fe3+ ions in the presence of various metal ions in an aqueous media by fluorescence quenching (turn-off) mechanism. The limit of detection (LOD) of MnO2@DEHP nanoprobe for Fe3+ was found to be 0.49 µM. The test-strip method and real water sample analysis were also used to demonstrate the viability of MnO2@DEHP as a fluorescent nanoprobe to detect Fe3+ ions visually and in environment monitoring applications.

2.
Bioorg Chem ; 150: 107568, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-38905887

RESUMO

Phenylselenide based BODIPY probe was successfully synthesized and characterized by NMR spectroscopic techniques (1H, 13C and 77Se NMR), mass spectrometry and single crystal XRD. Surprisingly, crystal packing diagram of the probe showed formation of 1-D strip through intermolecular F---H interaction. The probe was screened with various Reactive Oxygen Species (ROS) and found to be selective for superoxide ion over other ROS via "turn-on" fluorescence response. The probe selectively and sensitively detects superoxide with a lower detection limit (43.34 nM) without interfering with other ROS. The quantum yield of the probe was found to increase from 0.091 % to 30.4 % (334-fold) after oxidation. Theoretical calculations (DFT and TD-DFT) were also performed to understand the sensing mechanism of the probe. The probe was able to effectively detect superoxide inside living cells without any toxic effect.


Assuntos
Compostos de Boro , Corantes Fluorescentes , Compostos Organosselênicos , Compostos de Boro/química , Compostos de Boro/síntese química , Humanos , Compostos Organosselênicos/química , Compostos Organosselênicos/síntese química , Corantes Fluorescentes/química , Corantes Fluorescentes/síntese química , Estrutura Molecular , Teoria da Densidade Funcional , Superóxidos/análise , Células HeLa , Espécies Reativas de Oxigênio/metabolismo , Espécies Reativas de Oxigênio/análise
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA