Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Saudi Pharm J ; 28(10): 1276-1289, 2020 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-33132721

RESUMO

Sesamin, a major lignin isolated from sesame (Sesamum indicum) seeds and sesame oil, is known to possess antioxidant and anti-inflammatory properties. Several studies have revealed that oxidative stress and inflammation play a major role in a variety of cardiovascular diseases (CVDs). This comprehensive review summarizes the evidence on the effects of sesamin on CVD and its risk factors, principally due to its antioxidant properties. Specifically, this review highlights the mechanisms underlying the anti-hypertensive, anti-atherogenic, anti-thrombotic, anti-diabetic, and anti-obesity, lipolytic effects of sesamin both in vivo and in vitro, and identifies the signaling pathways targeted by sesamin and its metabolites. The data indicates that RAS/MAPK, PI3K/AKT, ERK1/2, p38, p53, IL-6, TNFα, and NF-κB signaling networks are all involved in moderating the various effects of sesamin on CVD and its risk factors. In conclusion, the experimental evidence suggesting that sesamin can reduce CVD risk is convincing. Thus, sesamin can be potentially useful as an adjuvant therapeutic agent to combat CVD and its multitude of risk factors.

2.
J Extracell Vesicles ; 13(1): e12396, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38179654

RESUMO

Cardiac progenitor cell (CPC)-derived small extracellular vesicles (sEVs) exhibit great potential to stimulate cardiac repair. However, the multifaceted nature of sEV heterogeneity presents a challenge in understanding the distinct mechanisms underlying their regenerative abilities. Here, a dual-step multimodal flowthrough and size-exclusion chromatography method was applied to isolate and separate CPC-derived sEV subpopulations to study the functional differences related to cardiac repair responses. Three distinct sEV subpopulations were identified with unique protein profiles. Functional cell assays for cardiac repair-related processes demonstrated that the middle-sized and smallest-sized sEV subpopulations exhibited the highest pro-angiogenic and anti-fibrotic activities. Proteasome activity was uniquely seen in the smallest-sized subpopulation. The largest-sized subpopulation showed no effect in any of the functional assays. This research uncovers the existence of sEV subpopulations, each characterized by a distinct composition and biological function. Enhancing our understanding of sEV heterogeneity will provide valuable insights into sEV mechanisms of action, ultimately accelerating the translation of sEV therapeutics.


Assuntos
Vesículas Extracelulares , Bioensaio , Cromatografia em Gel
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA