Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 37
Filtrar
1.
Chem Rev ; 121(17): 10469-10558, 2021 09 08.
Artigo em Inglês | MEDLINE | ID: mdl-34254782

RESUMO

Nucleic acids, including deoxyribonucleic acid (DNA) and ribonucleic acid (RNA), are natural biopolymers composed of nucleotides that store, transmit, and express genetic information. Overexpressed or underexpressed as well as mutated nucleic acids have been implicated in many diseases. Therefore, nucleic acid tests (NATs) are extremely important. Inspired by intracellular DNA replication and RNA transcription, in vitro NATs have been extensively developed to improve the detection specificity, sensitivity, and simplicity. The principles of NATs can be in general classified into three categories: nucleic acid hybridization, thermal-cycle or isothermal amplification, and signal amplification. Driven by pressing needs in clinical diagnosis and prevention of infectious diseases, NATs have evolved to be a rapidly advancing field. During the past ten years, an explosive increase of research interest in both basic research and clinical translation has been witnessed. In this review, we aim to provide comprehensive coverage of the progress to analyze nucleic acids, use nucleic acids as recognition probes, construct detection devices based on nucleic acids, and utilize nucleic acids in clinical diagnosis and other important fields. We also discuss the new frontiers in the field and the challenges to be addressed.


Assuntos
Doenças Transmissíveis/diagnóstico , DNA/análise , Técnicas de Amplificação de Ácido Nucleico , Sondas de Ácido Nucleico , RNA/análise , Animais , Doenças Transmissíveis/microbiologia , Doenças Transmissíveis/virologia , Humanos , Sondas de Ácido Nucleico/análise
2.
Anal Chem ; 93(4): 2226-2234, 2021 02 02.
Artigo em Inglês | MEDLINE | ID: mdl-33417427

RESUMO

Real-time imaging of multiple low-abundance microRNAs (miRNAs) simultaneously in living cells with high sensitivity is of vital importance for accurate cancer clinical diagnosis and prognosis studies. Maintaining stability of nanoprobes resistant to enzyme degradation and enabling effective signal amplification is highly needed for in vivo imaging studies. Herein, a rationally designed one-pot assembled multicolor tetrahedral DNA frameworks (TDFs) by encoding multicomponent nucleic acid enzymes (MNAzymes) was developed for signal-amplified multiple miRNAs imaging in living cells with high sensitivity and selectivity. TDFs could enter cells via self-delivery with good biocompatibility and stability. Two kinds of MNAzymes specific for miRNA-21 and miRNA-155 with fluorescein labeling were encoded in the structure of TDFs respectively through one-step thermal annealing. In the intracellular environment, the TDFs could be specifically bound with its specific miRNA target and form an active DNAzyme structure. The cleavage of the active site would trigger the release of target miRNA and circular fluorescence signal amplification, which enabled accurate diagnosis on miRNA identifications of different cell lines with high sensitivity. Meanwhile, with the specific AS1411 aptamer targeting for nucleolin overexpressed on the surface of the carcinoma cells, this well-designed TDFs nanoprobe exhibited good discrimination between cancer cells and normal cells. The strategy provides an efficient tool for understanding the biological function of miRNAs in cancer pathogenesis and therapeutic applications.


Assuntos
DNA/química , MicroRNAs/química , Imagem Molecular/métodos , Linhagem Celular Tumoral , Sobrevivência Celular , Humanos , Espaço Intracelular/metabolismo , Microscopia de Força Atômica , Sondas Moleculares/química , Nanotecnologia/métodos , Conformação de Ácido Nucleico
3.
J Am Chem Soc ; 142(22): 9975-9981, 2020 06 03.
Artigo em Inglês | MEDLINE | ID: mdl-32369359

RESUMO

Intracellular DNA-based hybridization reactions generally occur under tension rather than in free states, which are spatiotemporally controlled in physiological conditions. However, how nanomechanical forces affect DNA hybridization efficiencies in in-vitro DNA assays, for example, biosensors or biochips, remains largely elusive. Here, we design DNA framework-based nanomechanical handles that can control the stretching states of DNA molecules. Using a pair of tetrahedral DNA framework (TDF) nanostructured handles, we develop bridge DNA sensors that can capture target DNA with ultrafast speed and high efficiency. We find that the rigid TDF handles bind two ends of a single-stranded DNA (ssDNA) and hold it in a stretched state, with an apparent stretching length comparable to its counterpart of double-stranded DNA (dsDNA) via atomic force microscopy measurement. The DNA stretching effect of ssDNA is then monitored using single-molecule fluorescence energy transfer (FRET), resulting in decreased FRET efficiency in the stretched ssDNA. By controlling the stretching state of ssDNA, we obtained significantly improved hybridization kinetics (within 1 min) and hybridization efficiency (∼98%) under the target concentration of 500 nM. The bridge DNA sensors demonstrated high sensitivity (1 fM), high specificity (single mismatch mutation discrimination), and high selectivity (suitable for the detection in serum and blood) under the target concentration of 10 nM. Controlling the stretching state of ssDNA shows great potential in biosensors, bioimaging, and biochips applications.


Assuntos
Técnicas Biossensoriais , DNA/análise , Transferência Ressonante de Energia de Fluorescência , Hibridização de Ácido Nucleico
4.
Anal Chem ; 92(1): 1333-1339, 2020 01 07.
Artigo em Inglês | MEDLINE | ID: mdl-31820626

RESUMO

Spherical nucleic acids (SNAs) have been extensively used in the field of biosensing, drug delivery, and theranostics. Precise engineering of SNAs and their clinical application require better understanding of their cellular internalization process. We demonstrate a colorimetry-based algorithm that can analyze the aggregation states of SNAs clusters on the basis of the changes of plasmonic colors of SNAs. The dark-field microscopy (DFM) images of cytoplasmic region of single cells are imported as raw data. All the image spots are analyzed in the interference reduction process, and the clustering states of target image spots are assigned on the basis of the distribution of coordinates of all the pixels in the CIE map. This method provides faster analysis on clustering states of extracellular and intracellular SNAs with good accuracy. Moreover, the clustering states of SNAs in 20 single cells (generally >1000) can be efficiently distinguished within 200 s. Therefore, our method provides an automatic, quantitative, objective, and repeatable way to analyze SNAs aggregations, and shows good application potential in robust and quantitative nanoplasmonic analysis in single cells.


Assuntos
Automação , Técnicas Biossensoriais , Ouro/química , Nanopartículas Metálicas/química , Ácidos Nucleicos/análise , Análise de Célula Única , Algoritmos , Células HeLa , Humanos , Microscopia , Tamanho da Partícula , Propriedades de Superfície , Células Tumorais Cultivadas
5.
Angew Chem Int Ed Engl ; 59(26): 10406-10410, 2020 06 22.
Artigo em Inglês | MEDLINE | ID: mdl-32187784

RESUMO

Molecular recognition in cell biological process is characterized with specific locks-and-keys interactions between ligands and receptors, which are ubiquitously distributed on cell membrane with topological clustering. Few topologically-engineered ligand systems enable the exploration of the binding strength between ligand-receptor topological organization. Herein, we generate topologically controlled ligands by developing a family of tetrahedral DNA frameworks (TDFs), so the multiple ligands are stoichiometrically and topologically arranged. This topological control of multiple ligands changes the nature of the molecular recognition by inducing the receptor clustering, so the binding strength is significantly improved (ca. 10-fold). The precise engineering of topological complexes formed by the TDFs are readily translated into effective binding control for cell patterning and binding strength control of cells for cell sorting. This work paves the way for the development of versatile design of topological ligands.


Assuntos
Separação Celular/métodos , DNA/química , Aptâmeros de Nucleotídeos/química , Linhagem Celular Tumoral , Humanos , Ligantes , Conformação de Ácido Nucleico
6.
Angew Chem Int Ed Engl ; 59(12): 4892-4896, 2020 03 16.
Artigo em Inglês | MEDLINE | ID: mdl-31943596

RESUMO

Aligning carbon nanotubes (CNTs) is a key challenge for fabricating CNT-based electronic devices. Herein, we report a spherical nucleic acid (SNA) mediated approach for the highly precise alignment of CNTs at prescribed sites on DNA origami. We find that the cooperative DNA hybridization occurring at the interface of SNA and DNA-coated CNTs leads to an approximately five-fold improvement of the positioning efficiency. By combining this with the intrinsic positioning addressability of DNA origami, CNTs can be aligned in parallel with an extremely small angular variation of within 10°. Moreover, we demonstrate that the parallel alignment of CNTs prevents incorrect logic functionality originating from stray conducting paths formed by misaligned CNTs. This SNA-mediated method thus holds great potential for fabricating scalable CNT arrays for nanoelectronics.


Assuntos
DNA/química , Nanopartículas/química , Nanotubos de Carbono/química , Nanotecnologia , Tamanho da Partícula , Propriedades de Superfície
7.
J Am Chem Soc ; 141(44): 17861-17866, 2019 11 06.
Artigo em Inglês | MEDLINE | ID: mdl-31603326

RESUMO

DNA has evolved to be a type of unparalleled material for storing and transmitting genetic information. Much recent attention has been drawn to translate the natural specificity of DNA hybridization reactions for information storage in vitro. In this work, we developed a new type of tubular nucleic acid (TNA) by condensing DNA chains on the surface of one-dimensional carbon nanotubes (CNTs). We find that DNA interacts with CNTs in a sequence-specific manner, resulting in different conformations including helix, i-motif, and G-quadruplex. Atomic force microscopic (AFM) imaging revealed that TNAs exhibit distinct patterns with characteristic height and distance that can be exploited for two-dimensional encoding on CNTs. We further demonstrate the use of TNA-CNT for information storage with visual output. This noncanonical, DNA hybridization-free strategy provides a new route to DNA-based data storage.


Assuntos
DNA de Cadeia Simples/química , Armazenamento e Recuperação da Informação/métodos , Nanotubos de Carbono/química , Ouro/química , Nanopartículas Metálicas/química , Microscopia de Força Atômica , Conformação de Ácido Nucleico
8.
J Am Chem Soc ; 141(47): 18910-18915, 2019 11 27.
Artigo em Inglês | MEDLINE | ID: mdl-31691568

RESUMO

Receptor-ligand interactions (RLIs) that play pivotal roles in living organisms are often depicted with the classic keys-and-locks model. Nevertheless, RLIs on the cell surface are generally highly complex and nonlinear, partially due to the noncontinuous and dynamic distribution of receptors on extracellular membranes. Here, we develop a tetrahedral DNA framework (TDF)-programmed approach to topologically engineer RLIs on the cell membrane, which enables active recruitment-binding of clustered receptors for high-affinity capture of circulating tumor cells (CTCs). The four vertices of a TDF afford orthogonal anchoring of ligands with spatial organization, based on which we synthesized n-simplexes harboring 1-3 aptamers targeting epithelial cell adhesion molecule (EpCAM) that are overexpressed on the membrane of tumor cells. The 2-simplex with three aptamers not only shows increased binding affinity (∼19-fold) but prevents endocytosis by cells. By using 2-simplex as the capture probe, we demonstrate the high-efficiency CTC capture, which is challenged in real clinical breast cancer patient samples. This TDF-programmed platform thus provides a powerful means for studying RLIs in physiological settings and for cancer diagnosis.


Assuntos
Separação Celular/métodos , DNA/metabolismo , Molécula de Adesão da Célula Epitelial/metabolismo , Células Neoplásicas Circulantes/patologia , Engenharia de Proteínas , Aptâmeros de Nucleotídeos/metabolismo , Molécula de Adesão da Célula Epitelial/genética , Humanos , Ligantes , Células MCF-7
9.
Langmuir ; 34(49): 15055-15068, 2018 12 11.
Artigo em Inglês | MEDLINE | ID: mdl-30173521

RESUMO

Switchable interfaces, also known as smart interfaces, can alter their macroscopic properties in response to external stimuli. Compared to an artificial switchable interface, DNA-based switchable biointerfaces have high diversity, uniformity, reproducibility, and functionality and are easily designed and developed with atomic precision because the sequence of the DNA strand strictly governs the structural and active properties of its assembly. Moreover, various structures such as double strands based on the Watson-Crick base-pairing rule, G-quadruplexes, i-Motifs, triplexes, and parallel-stranded duplexes exist between or among DNA strands to enrich the structures of DNA biointerfaces. In this article, the design, stimulus responses, and applications of switchable DNA biointerfaces were discussed in terms of single-switch, dual-response, and sequential operation. The applications related to sensing, imaging, delivery, logic gates, and nanomechines were introduced in terms of the design and construction of DNA biointerfaces. Future directions and challenges were also outlined for this rapidly emerging field.


Assuntos
DNA/química , Animais , Técnicas Biossensoriais/métodos , Computadores Moleculares , Ouro/química , Humanos , Concentração de Íons de Hidrogênio , Células MCF-7 , Nanopartículas Metálicas/química , Camundongos , Nanotecnologia/métodos , Conformação de Ácido Nucleico , Análise Espectral Raman/métodos
10.
Angew Chem Int Ed Engl ; 57(24): 7131-7135, 2018 06 11.
Artigo em Inglês | MEDLINE | ID: mdl-29603524

RESUMO

Weak ligand-receptor recognition events are often amplified by recruiting multiple regulatory biomolecules to the action site in biological systems. However, signal amplification in in vitro biomimetic systems generally lack the spatiotemporal regulation in vivo. Herein we report a framework nucleic acid (FNA)-programmed strategy to develop valence-controlled signal amplifiers with high modularity for ultrasensitive biosensing. We demonstrated that the FNA-programmed signal amplifiers could recruit nucleic acids, proteins, and inorganic nanoparticles in a stoichiometric manner. The valence-controlled signal amplifier enhanced the quantification ability of electrochemical biosensors, and enabled ultrasensitive detection of tumor-relevant circulating free DNA (cfDNA) with sensitivity enhancement of 3-5 orders of magnitude and improved dynamic range.


Assuntos
Técnicas Biossensoriais/métodos , DNA Circular/análise , Nanoestruturas/química , Ácidos Nucleicos/química , Técnicas Eletroquímicas/métodos , Limite de Detecção , Técnicas de Amplificação de Ácido Nucleico/métodos
11.
Adv Mater ; 36(6): e2307499, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37800877

RESUMO

The exponential growth of global data has outpaced the storage capacities of current technologies, necessitating innovative storage strategies. DNA, as a natural medium for preserving genetic information, has emerged as a highly promising candidate for next-generation storage medium. Storing data in DNA offers several advantages, including ultrahigh physical density and exceptional durability. Facilitated by significant advancements in various technologies, such as DNA synthesis, DNA sequencing, and DNA nanotechnology, remarkable progress has been made in the field of DNA data storage over the past decade. However, several challenges still need to be addressed to realize practical applications of DNA data storage. In this review, the processes and strategies of in vitro DNA data storage are first introduced, highlighting recent advancements. Next, a brief overview of in vivo DNA data storage is provided, with a focus on the various writing strategies developed to date. At last, the challenges encountered in each step of DNA data storage are summarized and promising techniques are discussed that hold great promise in overcoming these obstacles.


Assuntos
DNA , Nanotecnologia , DNA/genética , Nanotecnologia/métodos , Armazenamento e Recuperação da Informação , Análise de Sequência de DNA/métodos , Sequência de Bases
12.
Chempluschem ; 89(6): e202300781, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38355897

RESUMO

Efficient biocatalytic cascade reactions play a crucial role in guiding intricate, specific and selective intracellular transformation processes. However, the catalytic activity of the enzyme cascade reaction in bulk solution was greatly impacted by the spatial morphology and inter-enzyme distance. The programmability and addressability nature of framework nucleic acid (FNA) allows to be used as scaffold for immobilization and to direct the spatial arrangement of enzyme cascade molecules. Here, we used tetrahedral DNA framework (TDF) as nanorulers to assemble two enzymes for constructing a double-enzyme complex, which significantly enhance the catalytic efficiency of sarcosine oxidase (SOx)/horseradish peroxidase (HRP) cascade system. We synthesized four types of TDF nanorulers capable of programming the lateral distance between enzymes from 5.67 nm to 12.33 nm. Enzymes were chemical modified by ssDNA while preserving most catalytic activity. Polyacrylamide gel electrophoresis (PAGE), transmission electron microscopy (TEM) and atomic force microscopy (AFM) were used to verify the formation of double-enzyme complex. Four types of double-enzyme complexes with different enzyme distance were constructed, in which TDF26(SOx+HRP) exhibited the highest relative enzyme cascade catalytic activity, ~3.11-fold of free-state enzyme. Importantly, all the double-enzyme complexes demonstrate a substantial improvement in enzyme cascade catalytic activity compared to free enzymes.


Assuntos
Biocatálise , DNA , Peroxidase do Rábano Silvestre , Sarcosina Oxidase , Peroxidase do Rábano Silvestre/química , Peroxidase do Rábano Silvestre/metabolismo , DNA/química , DNA/metabolismo , Sarcosina Oxidase/química , Sarcosina Oxidase/metabolismo , Enzimas Imobilizadas/química , Enzimas Imobilizadas/metabolismo
13.
Adv Mater ; 36(9): e2308344, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-37921116

RESUMO

Nanoscale vesicles such as synaptic vesicles play a pivotal role in efficient interneuronal communications in vivo. However, the coexistence of single vesicle and vesicle clusters in living cells increases the heterogeneity of vesicle populations, which largely complicates the quantitative analysis of the vesicles. The high spatiotemporal monitoring of vesicle assemblies is currently incompletely resolved. Here, this work uses synthetic vesicles and DNA nanorulers to reconstruct in vitro the vesicle assemblies that mimic vesicle clusters in living cells. DNA nanorulers program the lateral distance of vesicle assemblies from 3 to 10 nm. This work uses the carbon fiber nanoelectrode (CFNE) to amperometric monitor artificial vesicle assemblies with sub-10 nm interspaces, and obtain a larger proportion of complex events. This work resolves the heterogeneity of individual vesicle release kinetics in PC12 cells with the temporal resolution down to ≈0.1 ms. This work further analyzes the aggregation state of intracellular vesicles and the exocytosis of living cells with electrochemical vesicle cytometry. The results indicate that the exocytosis of vesicle clusters is critically dependent on the size of clusters. This technology has the potential as a tool to shed light on the heterogeneity analysis of vesicle populations.


Assuntos
Comunicação , DNA , Animais , Ratos , Cinética , Células PC12
14.
ACS Nano ; 18(11): 8051-8061, 2024 Mar 19.
Artigo em Inglês | MEDLINE | ID: mdl-38445976

RESUMO

The intracellular clustering of anisotropic nanoparticles is crucial to the improvement of the localized surface plasmon resonance (LSPR) for phototherapy applications. Herein, we programmed the intracellular clustering process of spiky nanoparticles (SNPs) by encapsulating them into an anionic liposome via a frame-guided self-assembly approach. The liposome-encapsulated SNPs (lipo-SNPs) exhibited distinct and enhanced lysosome-triggered aggregation behavior while maintaining excellent monodispersity, even in acidic or protein-rich environments. We explored the enhancement of the photothermal therapy performance for SNPs as a proof of concept. The photothermal conversion efficiency of lipo-SNPs clusters significantly increased 15 times compared to that of single lipo-SNPs. Upon accumulation in lysosomes with a 2.4-fold increase in clustering, lipo-SNPs resulted in an increase in cell-killing efficiency to 45% from 12% at 24 µg/mL. These findings indicated that liposome encapsulation provides a promising approach to programing nanoparticle clustering at the target site, which facilitates advances in the development of smart nanomedicine with programmable enhancement in LSPR.


Assuntos
Lipossomos , Nanopartículas , Fototerapia/métodos , Ressonância de Plasmônio de Superfície , Nanomedicina
15.
ACS Nano ; 17(10): 9155-9166, 2023 05 23.
Artigo em Inglês | MEDLINE | ID: mdl-37171255

RESUMO

Spike-like nanostructures are omnipresent in natural and artificial systems. Although biorecognition of nanostructures to cellular receptors has been indicated as the primary factor for virus infection pathways, how the spiky morphology of DNA-modified nanoparticles affects their cellular uptake and intracellular fate remains to be explored. Here, we design dually emissive gold nanoparticles with varied spikiness (from 0 to 2) to probe the interactions of spiky nanoparticles with cells. We discovered that nanospikes at the nanoparticle regulated myosin IIA recruitment at the cell membrane during cellular uptake, thereby enhancing cellular uptake efficiency, as revealed by dual-modality (plasmonic and fluorescence) imaging. Furthermore, the spiky nanoparticles also exhibited facilitated endocytosis dynamics, as revealed by real-time dark-field microscopy (DFM) imaging and colorimetry-based classification algorithms. These findings highlight the crucial role of the spiky morphology in regulating the intracellular fate of nanoparticles, which may shed light on engineering theranostic nanocarriers.


Assuntos
Nanopartículas Metálicas , Nanopartículas , Miosina não Muscular Tipo IIA , Miosina não Muscular Tipo IIA/metabolismo , Ouro/química , Nanopartículas Metálicas/química , Nanopartículas/química , Transporte Biológico , Membrana Celular/metabolismo , Endocitose
16.
ACS Appl Mater Interfaces ; 15(1): 541-551, 2023 Jan 11.
Artigo em Inglês | MEDLINE | ID: mdl-36534594

RESUMO

Designing an ocular drugs delivery system that can permeate the outer blood-retinal barrier (oBRB) is crucial for the microinvasive or noninvasive treatment of ocular fundus diseases. However, due to the lack of a nanocarrier that can maintain structure and composition at the oBRB, only intravitreal injection at the eyeball can deliver therapeutics directly to the ocular fundus via paracellular and intercellular routes, despite the intraocular operations risks. Here, we demonstrated tetrahedral framework nucleic acids (tFNAs) can penetrate the oBRB and deliver therapeutic nucleic acids to the retina of the rat eye in vivo following subconjunctival injection. We also discovered that tFNAs were transported via a paracellular route across the intercellular tight junctions at the oBRB. The histology analysis for ocular layers indicated that individual and aptamer/doxorubicin-loaded tFNAs penetrated all layers of the posterior segment of the eyeball to reach the innermost retina and persisted for over 3 days with minimal systemic biodistribution. We expect that the programmability and penetrability of tFNAs will provide a promising method for drug delivery across oBRB and long-term sustenance at the target site via periocular administration to various tissues.


Assuntos
Barreira Hematorretiniana , Ácidos Nucleicos , Ratos , Animais , Distribuição Tecidual , Retina , Sistemas de Liberação de Medicamentos/métodos
17.
Nat Nanotechnol ; 18(6): 677-686, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-36973399

RESUMO

A molecular classification of diseases that accurately reflects clinical behaviour lays the foundation of precision medicine. The development of in silico classifiers coupled with molecular implementation based on DNA reactions marks a key advance in more powerful molecular classification, but it nevertheless remains a challenge to process multiple molecular datatypes. Here we introduce a DNA-encoded molecular classifier that can physically implement the computational classification of multidimensional molecular clinical data. To produce unified electrochemical sensing signals across heterogeneous molecular binding events, we exploit DNA-framework-based programmable atom-like nanoparticles with n valence to develop valence-encoded signal reporters that enable linearity in translating virtually any biomolecular binding events to signal gains. Multidimensional molecular information in computational classification is thus precisely assigned weights for bioanalysis. We demonstrate the implementation of a molecular classifier based on programmable atom-like nanoparticles to perform biomarker panel screening and analyse a panel of six biomarkers across three-dimensional datatypes for a near-deterministic molecular taxonomy of prostate cancer patients.


Assuntos
DNA , Neoplasias da Próstata , Masculino , Humanos , Neoplasias da Próstata/diagnóstico , Neoplasias da Próstata/genética
18.
Anal Chem ; 84(10): 4622-7, 2012 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-22497579

RESUMO

We have developed a surface-enhanced Raman scattering (SERS)-active substrate based on gold nanoparticle-decorated chemical vapor deposition (CVD)-growth graphene and used it for multiplexing detection of DNA. Due to the combination of gold nanoparticles and graphene, the Raman signals of dye were dramatically enhanced by this novel substrate. With the gold nanoparticles, DNA capture probes could be easily assembled on the surface of graphene films which have a drawback to directly immobilize DNA. This platform exhibits extraordinarily high sensitivity and excellent specificity for DNA detection. A detection limit as low as 10 pM is obtained. Importantly, two different DNA targets could be detected simultaneously on the same substrate just using one light source.


Assuntos
DNA/análise , Grafite/química , Análise Espectral Raman , Sequência de Bases , Ouro/química , Nanopartículas Metálicas , Silício/química , Dióxido de Silício/química
19.
Anal Chem ; 84(18): 7664-9, 2012 Sep 18.
Artigo em Inglês | MEDLINE | ID: mdl-22928468

RESUMO

We present a highly sensitive colorimetric method for microRNA (miRNA) detection. This method is based on a rolling-circle amplification (RCA) DNA machine, which integrates RCA, nicking enzyme signal amplification and DNAzyme signal amplification. The DNA machine is triggered by the hybridization of target miRNA with a rational designed padlock DNA template and activated by RCA. The resulting RCA product then autonomously replicates a multiple machinery cutter cycle and generates accumulated amount of products. Specifically, the DNA product in the present work is designed as a horseradish peroxidase (HRP)-mimicking DNAzyme, which could that catalyze a colorimetric reaction and generate colored product. Through these cascade amplifications, microRNA (miRNA) as low as 2 aM could be detected. As an example of in vivo application, miRNA from single Drosophila larva was successfully analyzed. Drosophila is a model organism that provides a powerful genetic tool to study gene functions. Study of Drosophila miRNAs has brought us knowledge of its biogenesis and biological functions. The analysis of miRNA typically requires a pretreatment process of extracting total RNAs from target cells, followed by quantitative analysis of target miRNA in total RNA samples, which nevertheless suffers from laborious total RNA extraction and time-consuming processes and poor limit of detection. Meanwhile, the tiny size of Drosophila makes it difficult to accurately measure trivial changes of its cellular miRNA levels. The ability to detect ultralow concentration of miRNA of the proposed method enables the analysis the expression of mir-1 in single Drosophila larva. We thus expect that the strategy may open new avenues for in situ miRNA analysis in single cell or living animals.


Assuntos
DNA Catalítico/metabolismo , Drosophila/metabolismo , MicroRNAs/análise , Técnicas de Amplificação de Ácido Nucleico , Animais , Benzotiazóis/química , Drosophila/crescimento & desenvolvimento , Humanos , Peróxido de Hidrogênio/química , Larva/metabolismo , Ácidos Sulfônicos/química
20.
JACS Au ; 2(11): 2381-2399, 2022 Nov 28.
Artigo em Inglês | MEDLINE | ID: mdl-36465542

RESUMO

Artificial molecular machines have found widespread applications ranging from fundamental studies to biomedicine. More recent advances in exploiting unique physical and chemical properties of DNA have led to the development of DNA-based artificial molecular machines. The unprecedented programmability of DNA provides a powerful means to design complex and sophisticated DNA-based molecular machines that can exert mechanical force or motion to realize complex tasks in a controllable, modular fashion. This Perspective highlights the potential and strategies to construct artificial molecular machines using double-stranded DNA, functional nucleic acids, and DNA frameworks, which enable improved control over reaction pathways and motion behaviors. We also outline the challenges and opportunities of using DNA-based molecular machines for biophysics, biosensing, and biocomputing.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA