Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
J Environ Manage ; 354: 120346, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38387350

RESUMO

Organic semiconductor-based photocatalysts have been alluring due to their edge over inorganic photocatalysts. In this study, a reusable copper-bismuth oxide/polyacrylonitrile (Cu-Bi2O3/PAN) fibrous mat was prepared by fast-process flame spray pyrolysis and electrospinning for photocatalytic degradation of methylene blue (MB) and rhodamine B (RhB) dyes. The results confirmed a well-defined morphology of Cu-Bi2O3/PAN fibers and good coordination of flame-made Cu-Bi2O3 particles with the functional groups of PAN. The Cu-Bi2O3/PAN fibrous mat exhibits remarkable photocatalytic performance of 96.2% MB and 98.6% RhB degradation, with a reaction rate as high as about 4.5- and 10.2-times than that of flame-made Cu-Bi2O3 particles and PAN under neutral condition, even after 10 cycles. The Cu-Bi2O3/PAN exhibits complete degradation of MB and RhB in 90 and 150 min under alkaline and slightly acidic conditions, respectively. The synergistic effect of Cu-Bi2O3 and coordination bond between particles and functional groups of PAN promoted carrier migration, suppressed recombination of carriers and provided abundant radicals on the surface of the mat. Superoxide and hydroxyl radicals were the major active species involved in the degradation of RhB and MB, respectively. This work provides an insight into designing the Cu-metal-shuttle based photocatalysts to optimize fibrous mat application in water remediation.


Assuntos
Resinas Acrílicas , Cobre , Elétrons , Rodaminas , Azul de Metileno , Corantes
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA