Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 46
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Environ Res ; 243: 117792, 2024 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-38048868

RESUMO

Extended-spectrum ß-lactamase (ESBL)-producing Enterobacterales are a major public health problem, and wastewater from municipal wastewater treatment plants (WWTPs) is a potential means of spreading them into the environment and community. Our objective was to isolate ESBL-producing E. coli and other Enterobacterales from wastewater after treatment at Croatia's largest WWTP and to characterize these isolates by phenotypic and genotypic testing. Of the 200 bacterial isolates, 140 were confirmed as Enterobacterales by MALDI-TOF MS, with Escherichia coli and Klebsiella spp. predominating (69% and 7%, respectively). All 140 enterobacterial isolates were multidrug-resistant (MDR) and produced ESBLs. The most prevalent ESBL genes among the isolates tested were blaCTX-M-15 (60%), blaTEM-116 (44%), and blaCTX-M-3 (13%). Most isolates (94%) carried more than one ESBL gene in addition to blaCTX-M. Genes encoding plasmid-mediated AmpC, most notably blaEBC, were detected in 22% of isolates, whereas genes encoding carbapenemases (blaOXA-48, blaNDM-1, blaVIM-1) were less represented (10%). In E. coli, 9 different sequence types (ST) were found, with the emerging high-risk clones ST361 (serotype A-O9:H30) and pandemic ST131 (serotype B2-O25:H4) predominating (32% and 15%, respectively). Other high-risk E. coli clones included ST405 (3%), ST410 (3%), CC10 (3%), ST10 (3%), and ST38 (2%), and emerging clones included ST1193 (2%) and ST635 (2%). Whole-genome sequencing of three representative E. coli from two dominant clone groups (ST361 and ST131) and one extensively drug-resistant K. oxytoca revealed the presence of multiple plasmids and resistance genes to several other antibiotic classes, as well as association of the blaCTX-M-15 gene with transposons and insertion sequences. Our findings indicate that treated municipal wastewater contributes to the spread of emerging and pandemic MDR E. coli clones and other enterobacterial strains of clinical importance into the aquatic environment, with the risk of reintroduction into humans.


Assuntos
Escherichia coli , Águas Residuárias , Humanos , Escherichia coli/genética , beta-Lactamases/genética , Antibacterianos , Enterobacteriaceae/genética , Testes de Sensibilidade Microbiana
2.
Int J Mol Sci ; 25(1)2024 Jan 04.
Artigo em Inglês | MEDLINE | ID: mdl-38203824

RESUMO

The role of marine environments in the global spread of antibiotic resistance still remains poorly understood, leaving gaps in the One Health-based research framework. Antibiotic resistance genes (ARGs) encoding resistance to five major antibiotic classes, including sulfonamides (sul1, sul2), tetracyclines (tetA, tetB), ß-lactams (blaCTX-M, blaTEMblaVIM), macrolides (ermB, mphA), aminoglycosides (aac3-2), and integrase gene (intl1) were quantified by RT-qPCR, and their distribution was investigated in relation to environmental parameters and the total bacterial community in bottom layer and surface waters of the central Adriatic (Mediterranean), over a 68 km line from the wastewater-impacted estuary to coastal and pristine open sea. Seasonal changes (higher in winter) were observed for antibiotic resistance frequency and the relative abundances of ARGs, which were generally higher in eutrophic coastal areas. In particular, intl1, followed by blaTEM and blaVIM, were strongly associated with anthropogenic influence and Gammaproteobacteria as their predominant carriers. Water column stratification and geographic location had a significant influence on ARGs distribution in the oligotrophic zone, where the bacterial community exhibited a seasonal shift from Gammaproteobacteria in winter to Marine group II in summer.


Assuntos
Antibacterianos , Gammaproteobacteria , Antibacterianos/farmacologia , Sulfanilamida , Aminoglicosídeos , Archaea , Resistência Microbiana a Medicamentos/genética
3.
Int J Mol Sci ; 24(19)2023 Sep 26.
Artigo em Inglês | MEDLINE | ID: mdl-37834008

RESUMO

Point mutations in the 23S rRNA, gyrA, and gyrB genes can confer resistance to clarithromycin (CAM) and levofloxacin (LVX) by altering target sites or protein structure, thereby reducing the efficacy of standard antibiotics in the treatment of Helicobacter pylori infections. Considering the confirmed primary CAM and LVX resistance in H. pylori infected patients from southern Croatia, we performed a molecular genetic analysis of three target genes (23S rRNA, gyrA, and gyrB) by PCR and sequencing, together with computational molecular docking analysis. In the CAM-resistant isolates, the mutation sites in the 23S rRNA gene were A2142C, A2142G, and A2143G. In addition, the mutations D91G and D91N in GyrA and N481E and R484K in GyrB were associated with resistance to LVX. Molecular docking analyses revealed that mutant H. pylori strains with resistance-related mutations exhibited a lower susceptibility to CAM and LVX compared with wild-type strains due to significant differences in non-covalent interactions (e.g., hydrogen bonds, ionic interactions) leading to destabilized antibiotic-protein binding, ultimately resulting in antibiotic resistance. Dual resistance to CAM and LVX was found, indicating the successful evolution of H. pylori resistance to unrelated antimicrobials and thus an increased risk to human health.


Assuntos
Infecções por Helicobacter , Helicobacter pylori , Humanos , Claritromicina/farmacologia , Levofloxacino/farmacologia , Infecções por Helicobacter/tratamento farmacológico , Infecções por Helicobacter/genética , RNA Ribossômico 23S/genética , Simulação de Acoplamento Molecular , Croácia , Farmacorresistência Bacteriana/genética , Testes de Sensibilidade Microbiana , Antibacterianos/farmacologia , Antibacterianos/uso terapêutico , Biópsia
4.
Bioorg Chem ; 112: 104938, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-33933803

RESUMO

Quaternary ammonium compounds (QACs) are antimicrobial agents displaying a broad spectrum of activity due to their mechanism of action targeting the bacterial membrane. The emergence of bacterial resistance to QACs, especially in times of pandemics, requires the continuous search for new and potent QACs structures. Here we report the synthesis and biological evaluation of QACs based on imidazole derivative, N-benzylimidazole. The antimicrobial activity was tested against a range of pathogenic bacteria and fungi, both ATCC and clinical isolates, showing varying activities ranging in minimal inhibitory concentrations (MICs) from as low as 7 ng/mL. The most promising compound, N-tetradecyl derivative (BnI-14), proved to be very potent against bacterial biofilms, even at sub-MIC doses, suggesting interference with the bacterial growth and/or division process. The BnI-14 treatment induces bacterial membrane disruption, as observed by fluorescence spectroscopy and atomic force microscopy and it also binds to DNA indicating that bacterial membrane might not be the only cellular target of QACs. Most importantly, BnI-14 exhibits low toxicity to healthy human cell lines, suggesting that N-benzylimidazolium-based QACs may be promising new antimicrobial agents.


Assuntos
Bactérias/efeitos dos fármacos , Antibacterianos/síntese química , Antibacterianos/química , Antibacterianos/farmacologia , Bactérias/crescimento & desenvolvimento , Linhagem Celular , Sobrevivência Celular/efeitos dos fármacos , Relação Dose-Resposta a Droga , Humanos , Imidazóis/síntese química , Imidazóis/química , Imidazóis/farmacologia , Testes de Sensibilidade Microbiana , Estrutura Molecular , Sais/síntese química , Sais/química , Sais/farmacologia , Relação Estrutura-Atividade
5.
Phys Biol ; 16(6): 066005, 2019 09 18.
Artigo em Inglês | MEDLINE | ID: mdl-31434063

RESUMO

We present a simple growth model which was developed to explain Escherichia coli growth in batch culture. Optical density measurements are used to obtain E. coli growth curves for different inoculum sizes and nutrients concentrations. The model is described by two nonlinear mutually dependent differential equations that describe time evolution of bacteria and nutrients concentration. Introduction of the negative bacterium-bacterium interaction term is specific for the model and leads to the population decay. The proposed model describes entire experimental growth curves. The growth rate, as a function of initial nutrients concentration, follows the Monod function, whilst during the growth it decreases proportionally with the concentration of nutrients. The parameters in our equations can be related to the parameters of the logistic model. The proposed model can be applied to different E. coli strains and, because of the universality of the equations, might be applied to other bacterial strains.


Assuntos
Escherichia coli/crescimento & desenvolvimento , Modelos Biológicos , Técnicas de Cultura Celular por Lotes , Modelos Logísticos
6.
Chem Biodivers ; 16(4): e1800661, 2019 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-30714673

RESUMO

The cultivated Lepidium latifolium L. was investigated to decipher its glucosinolate profile, antimicrobial, and cytotoxic activities. HPLC/ESI-MS analyses of the intact glucosinolates and GC/MS analysis of their hydrolysis products showed the presence of sinigrin (1), glucocochlearin (2), glucotropaeolin (3), and 4-methoxyglucobrassicin (4). Hydrodistillate, extract, and allyl isothiocyanate, the main volatile resulting from sinigrin degradation, showed antimicrobial activity against all eleven tested pathogenic and food spoilage bacteria and fungi, with highest effect observed against Candida albicans with MIC50 8 and 16 µg/mL. Hydrodistillate and extract showed the best cytotoxic activity on bladder cancer UM-UC-3 cell line during an incubation time of 24 h (IC50 192.9 and 133.8 µg/mL, respectively), while the best effect on glioblastoma LN229 cell line was observed after 48 h (IC50 110.8 and 30.9 µg/mL, respectively). Pure allyl isothiocyanate displayed a similar trend in cytotoxic effect on both cell lines (IC50 23.3 and 36.5 µg/mL after 24 h and 48 h, respectively).


Assuntos
Antifúngicos/farmacologia , Antineoplásicos Fitogênicos/farmacologia , Candida albicans/efeitos dos fármacos , Isotiocianatos/farmacologia , Lepidium/química , Extratos Vegetais/farmacologia , Antifúngicos/química , Antifúngicos/isolamento & purificação , Antineoplásicos Fitogênicos/química , Antineoplásicos Fitogênicos/isolamento & purificação , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Relação Dose-Resposta a Droga , Ensaios de Seleção de Medicamentos Antitumorais , Humanos , Isotiocianatos/química , Isotiocianatos/isolamento & purificação , Testes de Sensibilidade Microbiana , Estrutura Molecular , Extratos Vegetais/química , Extratos Vegetais/isolamento & purificação , Relação Estrutura-Atividade
7.
Drug Dev Ind Pharm ; 45(11): 1770-1776, 2019 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-31418595

RESUMO

Halogenated boroxine dipotassium trioxohydroxytetrafluorotriborate, K2[B3O3F4OH] (boroxine) was previously shown to be very effective in inhibition of several carcinoma cell lines, including the skin cancer. Here, we investigated its antimicrobial potential by targeting the multidrug-resistant opportunistic pathogens associated with skin and wound infections. The antimicrobial testing against eleven bacterial and four fungal species revealed good activity of boroxine against pathogenic filamentous fungi Penicillium funiculosum and Aspergillus niger (MIC50 64 and 128 µg/ml), and a moderate bioactivity against the yeast Candida albicans (MIC50 512 µg/ml). Among the tested multidrug-resistant bacteria, the best antibacterial effect, stable over a 24-h period, was observed against the methicillin-resistant Staphylococcus aureus strain (MRSA) at MIC of 1024 µg/ml. The atomic force microscopy (AFM) used to investigate the morphology of S. aureus cells revealed indentations on its cell envelope after the boroxine exposure. These results show that in addition to the antitumor effect, boroxine exerts wide spectrum antimicrobial activity, thus may help preventing the development of skin and wound-related opportunistic infections.


Assuntos
Compostos de Boro/farmacologia , Farmacorresistência Bacteriana Múltipla/efeitos dos fármacos , Infecções Oportunistas/prevenção & controle , Resistência beta-Lactâmica/efeitos dos fármacos , Inibidores de beta-Lactamases/farmacologia , Aspergillus niger/efeitos dos fármacos , Aspergillus niger/metabolismo , Compostos de Boro/química , Compostos de Boro/uso terapêutico , Candida albicans/efeitos dos fármacos , Candida albicans/metabolismo , Halogenação , Humanos , Staphylococcus aureus Resistente à Meticilina/efeitos dos fármacos , Staphylococcus aureus Resistente à Meticilina/metabolismo , Testes de Sensibilidade Microbiana , Estrutura Molecular , Infecções Oportunistas/microbiologia , Penicillium/efeitos dos fármacos , Penicillium/metabolismo , Dermatopatias Infecciosas/microbiologia , Dermatopatias Infecciosas/prevenção & controle , Infecção dos Ferimentos/microbiologia , Infecção dos Ferimentos/prevenção & controle , Inibidores de beta-Lactamases/química , Inibidores de beta-Lactamases/uso terapêutico , beta-Lactamases/metabolismo
8.
Environ Monit Assess ; 190(2): 81, 2018 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-29335824

RESUMO

Pseudomonas aeruginosa is one the most common multidrug-resistant pathogens worldwide. It has been previously detected in marine shellfish, but its antibiotic resistance in such environment has not been explored. By combining PCR detection of acquired genes, and resistance-nodulation-cell division (RND) efflux studying, we investigated the multifactorial resistance traits of 108 P. aeruginosa isolates recovered from wild-growing Mediterranean mussels (Mytilus galloprovincialis) in Croatia. Eleven different resistance profiles were found, with the main mechanism being the overexpression of intrinsic efflux pump(s), particularly MexAB-OprM. Several acquired resistance determinants were detected, including the ß-lactamase gene blaTEM-116, sulfamethoxazole resistance gene sul1, and the class 1 integron gene cassette carrying the streptomycin resistance gene aadA7. This study evidenced the multiple resistance in P. aeruginosa in shellfish from human-impacted marine environment, pointing to the underestimated role of the marine habitat for maintenance of multiresistant P. aeruginosa and, consequently, the potential risk for human and environmental health.


Assuntos
Resistência Microbiana a Medicamentos/genética , Monitoramento Ambiental , Mytilus/microbiologia , Pseudomonas aeruginosa/genética , Animais , Antibacterianos/farmacologia , Proteínas da Membrana Bacteriana Externa , Proteínas de Bactérias/genética , Croácia , Humanos , Proteínas de Membrana Transportadoras , Testes de Sensibilidade Microbiana , Reação em Cadeia da Polimerase , Frutos do Mar , beta-Lactamases/genética
9.
Chem Biodivers ; 14(2)2017 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-27552682

RESUMO

The cytogenetic characterization of Centaurea solstitialis L. (Asteraceae) showed a chromosome number of 2n = 16. Karyotype is composed by four pairs of metacentric, two pairs of submetacentric and two pairs of subtelocentric chromosomes. Physical mapping of two rDNA probes revealed two loci of 35S and one locus of 5S rRNA genes. Chromomycin fluorochrome banding revealed that all rDNA loci were GC rich. The genome size (2C-value) of 1.95 pg classes this species in the group of very small genomes. Chemical composition of C. solstitialis volatile oil (VO) from Croatia, studied with gas chromatography-mass spectrometry showed dominant components as it follows: hexadecanoic acid, α-linolenic acid, germacrene D and heptacosane. Antioxidant capacity, measured by ferric reducing power assay and 2,2-diphenyl-1-picrylhydrazyl methods, as well as inhibition of acetyl- and butyrylcholinesterase of VO was lower comparing to a standard solutions. Volatile oil tested with disc diffusion method showed good inhibitory potential against Pseudomonas aeruginosa, Escherichia coli and all tested fungi: Candida albicans, Penicillium funiculosum and Aspergillus fumigatus. The microdilution method showed best activity against Chronobacter sakazakii and A. fumigatus.


Assuntos
Anti-Infecciosos/farmacologia , Antioxidantes/farmacologia , Análise Citogenética/métodos , DNA de Plantas/genética , Óleos Voláteis/farmacologia , Compostos Fitoquímicos/farmacologia , Bactérias/efeitos dos fármacos , Centaurea/química , Centaurea/genética , Cromossomos de Plantas/genética , Croácia , DNA Ribossômico/genética , Fungos/efeitos dos fármacos , Cromatografia Gasosa-Espectrometria de Massas , Genoma de Planta , Hibridização in Situ Fluorescente , Óleos Voláteis/química
10.
Microb Drug Resist ; 30(3): 118-126, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38330414

RESUMO

Nontyphoid salmonella can cause severe infections in newborns and is therefore declared a pathogen of major health significance at this age. The aim of the study was molecular and antimicrobial characterization of ß-lactamase-producing Salmonella Mikawasima outbreak clone on a Neonatal ward, University Hospital of Split (UHS), Croatia during the COVID-19 pandemic. From April 2020, until April 2023, 75 nonrepetitive strains of Salmonella Mikawasima were isolated from stool specimens and tested for antimicrobial resistance. All 75 isolates were resistant to ampicillin and gentamicin, while 98% of isolates were resistant to amoxicillin/clavulanic acid. A high level of resistance was observed to third-generation cephalosporins (36% to ceftriaxone and 47% to ceftazidime). Extended-spectrum ß-lactamase production was phenotypically detected by double-disk synergy test in 40% of isolates. Moderate resistance to quinolones was detected; 7% of isolates were resistant to pefloxacin and ciprofloxacin. All isolates were susceptible to carbapenems, chloramphenicol, and co-trimoxazole. Fourteen representative isolates, from 2020, 2021, 2022, and 2023, were analyzed with PFGE and all of them belong to the same clone. Whole-genome sequencing (WGS) analysis of three outbreak-related strains (SM1 and SM2 from 2020 and SM3 from 2023) confirmed that these strains share the same serotype (Mikawasima), multilocus sequence typing profile (ST2030), resistance genes [blaTEM-1B, aac(6')-Iaa, aac(6')-Im, and aph(2'')-Ib)] and carry incompatibility group C (IncC) plasmid. Furthermore, the gene blaSHV-2 was detected in SM1 and SM2. In summary, WGS analysis of three representative strains clearly demonstrates the persistence of ß-lactamase-producing Salmonella Mikawasima in UHS during the 4-year period.


Assuntos
COVID-19 , Salmonella enterica , Recém-Nascido , Humanos , Antibacterianos/farmacologia , Sorogrupo , Pandemias , Salmonella enterica/genética , Testes de Sensibilidade Microbiana , COVID-19/epidemiologia , Salmonella , beta-Lactamases/genética , Farmacorresistência Bacteriana Múltipla/genética , Hospitais
11.
Environ Int ; 185: 108554, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38479059

RESUMO

Among the most problematic bacteria with clinical relevance are the carbapenem-resistant Enterobacterales (CRE), as there are very limited options for their treatment. Treated wastewater can be a route for the release of these bacteria into the environment and the population. The aim of this study was to isolate CRE from treated wastewater from the Zagreb wastewater treatment plant and to determine their phenotypic and genomic characteristics. A total of 200 suspected CRE were isolated, 148 of which were confirmed as Enterobacterales by MALDI-TOF MS. The predominant species was Klebsiella spp. (n = 47), followed by Citrobacter spp. (n = 40) and Enterobacter cloacae complex (cplx.) (n = 35). All 148 isolates were carbapenemase producers with a multidrug-resistant phenotype. Using multi-locus sequence typing and whole-genome sequencing (WGS), 18 different sequence types were identified among these isolates, 14 of which were associated with human-associated clones. The virulence gene analysis of the sequenced Klebsiella isolates (n = 7) revealed their potential pathogenicity. PCR and WGS showed that the most frequent carbapenemase genes in K. pneumoniae were blaOXA-48 and blaNDM-1, which frequently occurred together, while blaKPC-2 together with blaNDM-1 was mainly detected in K. oxytoca, E. cloacae cplx. and Citrobacter spp. Colistin resistance was observed in 40% of Klebsiella and 57% of Enterobacter isolates. Underlying mechanisms identified by WGS include known and potentially novel intrinsic mechanisms (point mutations in the pmrA/B, phoP/Q, mgrB and crrB genes) and acquired mechanisms (mcr-4.3 gene). The mcr-4.3 gene was identified for the first time in K. pneumoniae and is probably located on the conjugative IncHI1B plasmid. In addition, WGS analysis of 13 isolates revealed various virulence genes and resistance genes to other clinically relevant antibiotics as well as different plasmids possibly associated with carbapenemase genes. Our study demonstrates the important role that treated municipal wastewater plays in harboring and spreading enterobacterial pathogens that are resistant to last-resort antibiotics.


Assuntos
Carbapenêmicos , Colistina , Humanos , Colistina/farmacologia , Carbapenêmicos/farmacologia , Águas Residuárias , Klebsiella/genética , Epidemiologia Molecular , Tipagem de Sequências Multilocus , Croácia , Antibacterianos/farmacologia , beta-Lactamases/genética , Klebsiella pneumoniae/genética , Testes de Sensibilidade Microbiana
12.
Bioorg Med Chem ; 21(23): 7499-506, 2013 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-24126094

RESUMO

Two different series of N-substituted imidazolium oximes and their monoquaternary salts were synthesized and biologically tested with respect to their ability to inhibit growth a diverse panel of antibiotic susceptible Gram-positive and antibiotic resistant Gram-negative bacteria as well fungal strains. The newly synthesized compounds were analyzed by spectral studies to confirm their structure. The preliminary results showed that all compounds tested possess promising antimicrobial potential against both susceptible Gram-positive and antibiotic resistant Gram-negative isolates, exhibiting a wide range of MIC values from 0.14 to 100.0 µg/mL. The structure-activity relationship demonstrates that the p-methylphenyl and p-fluorophenyl groups in monoquaternary salts 6 and 7 attached directly to the imidazolium ring could be essential for observed remarkable inhibitory profiles against clinically important pathogens Pseudomonas aeruginosa (MIC=0.14 µg/mL) and Klebsiella pneumoniae (MIC=1.56 µg/mL). Furthermore, the broth microdilution assay was then used to investigate the antiresistance efficacy of compound 7 against fourteen extended-spectrum ß-lactamase (ESBL)-producing strains in comparison to eight clinically relevant antibiotics. Compound 7 exhibited a remarkable antiresistance profiles ranging between 0.39 and 12.50 µg/mL against all of ESBL-producing strains, which leads to the suggestion that may be interesting candidate for development of new antimicrobials to combat multidrug resistant Gram-negative bacteria.


Assuntos
Anti-Infecciosos/química , Anti-Infecciosos/farmacologia , Imidazóis/química , Imidazóis/farmacologia , Oximas/química , Oximas/farmacologia , Anti-Infecciosos/síntese química , Infecções Bacterianas/tratamento farmacológico , Resistência a Múltiplos Medicamentos , Fungos/efeitos dos fármacos , Bactérias Gram-Negativas/efeitos dos fármacos , Bactérias Gram-Positivas/efeitos dos fármacos , Humanos , Imidazóis/síntese química , Testes de Sensibilidade Microbiana , Micoses/tratamento farmacológico , Oximas/síntese química
13.
Chem Biodivers ; 10(6): 1072-80, 2013 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-23776022

RESUMO

The phytochemical profile and the antimicrobial effects of the volatile oil and the aqueous extract of Campanula portenschlagiana, a wild growing plant endemic to Croatia, were described. In the volatile oil, 53 compounds were identified by GC-FID and GC/MS analyses. Diterpene alcohols constituted the major compound class with labda-13(16),14-dien-8-ol as the main compound. The aqueous extract was characterized by the total phenolic content. The antimicrobial potential of the volatile oil and the aqueous extract was evaluated against a diverse range of microorganisms comprising food-spoilage and food-borne pathogens. The volatile oil exhibited interesting and promising antimicrobial effects against the tested species, which were generally more pronounced against Gram-negative bacteria. In addition, the inhibitory effect of this volatile oil was also evaluated against eleven extended-spectrum ß-lactamase (ESBL)-producing isolates. The results suggest that the C. portenschlagiana volatile oil might be used as antimicrobial agent against ESBL-producing isolates and Gram-negative bacteria.


Assuntos
Anti-Infecciosos/química , Campanulaceae/química , Óleos Voláteis/química , Anti-Infecciosos/isolamento & purificação , Anti-Infecciosos/farmacologia , Cromatografia Gasosa-Espectrometria de Massas , Bactérias Gram-Negativas/efeitos dos fármacos , Bactérias Gram-Negativas/enzimologia , Testes de Sensibilidade Microbiana , Óleos Voláteis/isolamento & purificação , Óleos Voláteis/farmacologia , beta-Lactamases/metabolismo
14.
World J Microbiol Biotechnol ; 29(3): 515-22, 2013 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-23132253

RESUMO

The aim of this study was to investigate the prevalence and genetic basis of multidrug resistance in Chryseobacterium indologenes from seawater and marine invertebrates used for human consumption, in Kastela Bay, Adriatic Sea, Croatia. Out of 16 samples of seawater, Mediterranean mussel (Mytilus galloprovincialis Lam.), Rayed Mediterranean limpets (Patella caerulea L.) and Purple sea urchins (Paracentrotus lividus Lam.) collected, 15 were positive for C. indologenes. In total, 41 isolates were randomly selected and tested for antibiotic susceptibility by disc-diffusion and broth microdilution methods. PCR was used to detect alleles encoding extended-spectrum (ESBLs) and metallo-ß-lactamases (MBLs). The clonality of ß-lactamase-producing strains was evaluated by random amplified polymorphic DNA (RAPD) analysis. All C. indologenes isolates showed multiple resistance to at least 9 out of 16 antibiotics tested. Lowest resistance rates were found for piperacillin (9.7 %) and ciprofloxacin (24.4 %), whereas only piperacillin/tazobactam and trimethoprim/sulfamethoxazole showed 100 % activity. More than half of isolates carried bla (IND)-type gene, including 2 isolates carrying bla (IND-2) and 21 carrying bla (IND-7), that was identified as a major MBL genotype in isolates from Adriatic Sea. RAPD typing of IND-producing isolates revealed 6 major groups with no predominant clone in population. The presence of multidrug resistant and IND-producing C. indologenes in marine environment, including marine fauna, pose a risk for transmitting this opportunistic pathogen to humans through recreation or consummation of seafood. In addition, the antibiotic susceptibility test results have practical relevance for empirical treatment of C. indologenes infections.


Assuntos
Bivalves/microbiologia , Chryseobacterium/efeitos dos fármacos , Farmacorresistência Bacteriana Múltipla/genética , Gastrópodes/microbiologia , Ouriços-do-Mar/microbiologia , Água do Mar/microbiologia , Animais , Antibacterianos/farmacologia , Chryseobacterium/classificação , Chryseobacterium/genética , Chryseobacterium/isolamento & purificação , Croácia , Infecções por Flavobacteriaceae/microbiologia , Genótipo , Humanos , Testes de Sensibilidade Microbiana , Técnica de Amplificação ao Acaso de DNA Polimórfico , Alimentos Marinhos/microbiologia , beta-Lactamases/biossíntese , beta-Lactamases/genética
15.
Water Res ; 246: 120688, 2023 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-37806125

RESUMO

Marine and ocean environments are the most widespread habitats in the world but are still the least studied from the aspect of antibiotic resistance. The indigenous and tetracycline (TET)- and sulfamethoxazole (SXT)-resistant planktonic bacterial communities were simultaneously investigated for the first time along a trophic gradient of a temperate zone, regarding their taxonomic and functional structures as well as biotic and abiotic factors affecting their dynamics as vehicles of antibiotic resistance genes (ARGs), thus impacting the ARGs distribution at seasonal and spatial scales. A total of 80 microbiomes, recovered seasonally from bottom layer and surface waters along a 68-km transect from wastewater-impacted estuary to coastal and pristine open sea in the central Adriatic (Mediterranean Sea), were analysed using 16S rRNA amplicon sequencing, PICRUSt2 bioinformatics and extensive biostatistics. Eighty-one bacterial phyla were identified, with majority (n = 49) in summer when communities were found to be more species enriched across the gradient. Microbial diversity was more site-specific and pronounced in surface microbiomes in winter. Nevertheless, both richness and community diversity decreased with distance from the coast. Although the microbiomes from human-influenced sites significantly differed from those in oligotrophic offshore area, Proteobacteria were still the most abundant phylum during both seasons at the surface and seabed along the gradient, and the major contributors to the marine resistome regarding native and TET- and SXT-resistant microbial communities. Resistome structure was more diverse in winter, whereas peptide, vancomycin and multidrug resistance modules predominated regardless of season, trophic status, or antibiotic. However, multidrug, beta-lactam resistance modules as well as macrolide, phenicol, aminoglycoside, and particularly imipenem resistance genes were much more frequent in winter, suggesting that the diversity of indigenous resistomes is highly dependent on seasonal variations of the water column, driven by thermohaline stratification and nutrients. Moreover, several pathogenic genera stood out as important carriers of multiple resistance traits in TET- and SXT-related resistomes in both seasons, particularly Acinetobacter, Vibrio, Bacillus and Pseudomonas, beside which Proteus, Serratia and Bacteroides prevailed in native resistomes. This study evidenced seasonal and spatial variations of the marine microbiome and resistome and their driving forces along the trophic gradient, providing a comprehensive insight into the diversity and distribution of antibiotic resistance in the marine ecosystem of a temperate zone.


Assuntos
Bactérias , Microbiota , Humanos , RNA Ribossômico 16S/genética , Bactérias/genética , Antibacterianos , Tetraciclina , Genes Bacterianos
16.
Sci Total Environ ; 858(Pt 1): 159720, 2023 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-36306843

RESUMO

Vancomycin-resistant Enterococcus faecium (VREfm) is an opportunistic pathogen among the highest global priorities regarding public and environmental health. Following One Health approach, we determined for the first time the antibiotic resistance and virulence genes, and sequence types (STs) affiliation of VREfm recovered simultaneously from marine beach waters, submarine outfall of a wastewater treatment plant and an offshore discharge of untreated sewage, and compared them with the surveillance VREfm from regional university hospital in Croatia to assess the hazard of their transmission and routes of introduction into the natural environment. Importantly, VREfm recovered from wastewater, coastal bathing waters and hospital shared similar virulence, multidrug resistance, and ST profiles, posing a major public health threat. All isolates carried the vanA gene, while one clinical isolate also possessed the vanC2/C3 gene. The hospital strains largely carried the aminoglycoside-resistance genes aac(6')-Ie-aph(2″)-Ia, and aph(2″)-Ib and aph(2″)-Id, which were also predominant in the environmental isolates. The hyl gene was the most prevalent virulence gene. The isolates belonged to 10 STs of the clonal complex CC17, a major epidemic lineage associated with hospital infections and outbreaks, with ST117 and ST889 common to waterborne and hospital isolates, pointing to their sewage-driven dissemination. To gain better insight into the diversity of accompanying taxons in the surveyed water matrices, microbiome taxonomic profiling was carried out using Illumina-based 16S rDNA sequencing and their resistome features predicted using the PICRUSt2 bioinformatics tool. An additional 60 pathogenic bacterial genera were identified, among which Arcobacter, Acinetobacter, Escherichia-Shigella, Bacteroides and Pseudomonas were the most abundant and associated with a plethora of antibiotic resistance genes and modules, providing further evidence of the hazardous effects of wastewater discharges, including the treated ones, on the natural aquatic environment that should be adequately addressed from a sanitary and technological perspective.


Assuntos
Enterococcus faecium , Infecções por Bactérias Gram-Positivas , Microbiota , Enterococos Resistentes à Vancomicina , Humanos , Enterococcus faecium/genética , Vancomicina/farmacologia , Vancomicina/uso terapêutico , Resistência a Vancomicina/genética , Águas Residuárias/microbiologia , Infecções por Bactérias Gram-Positivas/tratamento farmacológico , Infecções por Bactérias Gram-Positivas/epidemiologia , Infecções por Bactérias Gram-Positivas/microbiologia , Água , Esgotos , Enterococos Resistentes à Vancomicina/genética , Antibacterianos/farmacologia , Testes de Sensibilidade Microbiana
17.
Sci Total Environ ; 870: 161805, 2023 Apr 20.
Artigo em Inglês | MEDLINE | ID: mdl-36708818

RESUMO

The emergence of extended-spectrum ß-lactamase (ESBL)- and especially carbapenemases in Enterobacterales has led to limited therapeutic options. Therefore, it is critical to fully understand all potential routes of transmission, especially in high-risk sources such as hospital wastewater. This study aimed to quantify four enteric opportunistic pathogens (EOPs), total, ESBL- and carbapenem-resistant coliforms and their corresponding resistance genes (two ESBL and five carbapenemase genes) and to characterize enterobacterial isolates from hospital wastewater from two large hospitals in Zagreb over two seasons. Culturing revealed similar average levels of total and carbapenem-resistant coliforms (3.4 × 104 CFU/mL), and 10-fold lower levels of presumptive ESBL coliforms (3 × 103 CFU/mL). Real-time PCR revealed the highest E. coli levels among EOPs (105 cell equivalents/mL) and the highest levels of the blaKPC gene (up to 10-1 gene copies/16S copies) among all resistance genes examined. Of the 69 ESBL- and 90 carbapenemase-producing Enterobacterales (CPE) isolates from hospital wastewater, all were multidrug-resistant and most were identified as Escherichia coli, Citrobacter, Enterobacter, and Klebsiella. Among ESBL isolates, blaCTX-M-15 was the most prevalent ESBL gene, whereas in CPE isolates, blaKPC-2 and blaNDM-1 were the most frequently detected CP genes, followed by blaOXA-48. Molecular epidemiology using PFGE, MLST and whole-genome sequencing (WGS) revealed that clinically relevant variants such as E. coli ST131 (blaCTX-M-15/blaTEM-116) and ST541 (blaKPC-2), K. pneumoniae ST101 (blaOXA-48/blaNDM-1), and Enterobacter cloacae complex ST277 (blaKPC-2/blaNDM-1) were among the most frequently detected clone types. WGS also revealed a diverse range of resistance genes and plasmids in these and other isolates, as well as transposons and insertion sequences in the flanking regions of the blaCTX-M, blaOXA-48, and blaKPC-2 genes, suggesting the potential for mobilization. We conclude that hospital wastewater is a potential secondary reservoir of clinically important pathogens and resistance genes and therefore requires effective pretreatment before discharge to the municipal sewer system.


Assuntos
Antibacterianos , Escherichia coli , Antibacterianos/farmacologia , Águas Residuárias , Tipagem de Sequências Multilocus , Croácia , Proteínas de Bactérias/genética , beta-Lactamases/genética , Klebsiella pneumoniae , Hospitais , Klebsiella/genética , Klebsiella/metabolismo , Enterobacter/genética , Carbapenêmicos/farmacologia , Testes de Sensibilidade Microbiana
18.
Int J Environ Health Res ; 22(6): 531-42, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22428949

RESUMO

During an environmental study of bacterial resistance to antibiotics in coastal waters of the Kastela Bay, Adriatic Sea, Croatia, 47 Burkholderia cepacia complex (Bcc) isolates were recovered from seawater and mussel (Mytilus galloprovincialis) samples. All isolates showed multiple antibiotic resistance. Among the isolates, two Burkholderia cenocepacia isolates produced chromosomally encoded TEM-116 extended-spectrum ß-lactamase (ESBL). Analysis of outer membrane proteins revealed that decreased expression of a 36-kDa protein could be associated with a high level of ß-lactam resistance in both isolates. Phenotypic study of efflux system also indicated an over-expression of Resistance-Nodulation-Cell Division (RND) efflux-mediated mechanism in one of the isolates. This study demonstrated the presence of Bcc in seawater and M. galloprovincialis, which gives evidence that coastal marine environment, including mussels, could be considered as a reservoir for Bcc species. Detection of ESBL-encoding genes indicates the potential role of these bacteria in the maintenance and dispersion of antibiotic resistance genes.


Assuntos
Antibacterianos/farmacologia , Complexo Burkholderia cepacia/isolamento & purificação , Farmacorresistência Bacteriana Múltipla , Mytilus/microbiologia , Água do Mar/microbiologia , Animais , Proteínas da Membrana Bacteriana Externa/metabolismo , Complexo Burkholderia cepacia/efeitos dos fármacos , Complexo Burkholderia cepacia/genética , Croácia , DNA Bacteriano/análise , Dipeptídeos/farmacologia , Monitoramento Ambiental , Peixes/microbiologia , Testes de Sensibilidade Microbiana , Poluentes da Água/isolamento & purificação
19.
World J Microbiol Biotechnol ; 28(5): 2039-45, 2012 May.
Artigo em Inglês | MEDLINE | ID: mdl-22806025

RESUMO

The aim of this study was to investigate the antibiotic susceptibility profiles and the presence of extended-spectrum-ß-lactamases (ESBLs) in Pseudomonas fluorescens isolates from coastal waters of the Kastela Bay, Croatia. Twenty-two water samples were collected during 2009. Isolates were tested for susceptibilities to 13 antibiotics by Etest. ESBL production was confirmed by double-disk synergy test carried out on Mueller-Hinton agar plates containing efflux pump inhibitor Phe-Arg-ß-naphthylamide dihydrochloride. PCR and DNA sequencing analysis were used to identify ESBL-encoding genes. The transferability of cephalosporin resistance was tested by conjugation experiments. Genetic relatedness of ESBL-producing isolates was determined by random amplified polymorphic DNA (RAPD) analysis. Out of 185 P. fluorescens isolates recovered, 70 (37.8%) demonstrated multiresistance phenotype with highest rates of resistance to tetracycline (61.6%), aztreonam (31.9%), meropenem (17.3%), ceftazidime (15.1%) and cefotaxime (12.4%). Ten (5.4%) isolates were identified as ESBL producers. All isolates carried chromosomally located bla (TEM-116) gene. RAPD analysis identified four different genotypes. Here, we demonstrated a baseline profiles of antimicrobial resistance of P. fluorescens from coastal waters of the Kastela Bay, Croatia. To our knowledge, this is the first report of the presence of TEM-type ESBL in P. fluorescens, indicating this bacterium as a reservoir of antibiotic resistance genes with clinical relevance.


Assuntos
Antibacterianos/farmacologia , Pseudomonas fluorescens/isolamento & purificação , Água do Mar/microbiologia , beta-Lactamases/metabolismo , Análise por Conglomerados , Conjugação Genética , Croácia , DNA Bacteriano/química , DNA Bacteriano/genética , Transferência Genética Horizontal , Genótipo , Testes de Sensibilidade Microbiana , Tipagem Molecular , Reação em Cadeia da Polimerase , Pseudomonas fluorescens/efeitos dos fármacos , Pseudomonas fluorescens/enzimologia , Pseudomonas fluorescens/genética , Técnica de Amplificação ao Acaso de DNA Polimórfico , Análise de Sequência de DNA , beta-Lactamases/genética
20.
Environ Pollut ; 292(Pt A): 118282, 2022 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-34619178

RESUMO

Wastewater treatment plant (WWTP) effluents are pointed as hotspots for the introduction of both commensal and pathogenic bacteria as well as their antibiotic resistance genes (ARGs) in receiving water bodies. For the first time, the effect of partially treated submarine effluents was explored at the bottom and surface of the water column to provide a comprehensive overview of the structure of the microbiome and associated AR, and to assess environmental factors leading to their alteration. Seawater samples were collected over a 5-month period from submarine outfalls in central Adriatic Sea, Croatia. 16S rRNA amplicon sequencing was used to establish taxonomic and resistome profiles of the bacterial communities. The community differences observed between the two discharge areas, especially in the abundance of Proteobacteria and Firmicutes, could be due to the origin of wastewaters treated in WWTPs and the limiting environmental conditions such as temperature and nutrients. PICRUSt2 analysis inferred the total content of ARGs in the studied microbiomes and showed the highest abundance of resistance genes encoding multidrug efflux pumps, such as MexAB-OprM, AcrEF-TolC and MdtEF-TolC, followed by the modified peptidoglycan precursors, transporter genes encoding tetracycline, macrolide and phenicol resistance, and the bla operon conferring ß-lactam resistance. A number of pathogenic genera introduced by effluents, including Acinetobacter, Arcobacter, Bacteroides, Escherichia-Shigella, Klebsiella, Pseudomonas, and Salmonella, were predicted to account for the majority of efflux pump-driven multidrug resistance, while Acinetobacter, Salmonella, Bacteroides and Pseudomonas were also shown to be the predominant carriers of non-efflux ARGs conferring resistance to most of nine antibiotic classes. Taken together, we evidenced the negative impact of submarine discharges of treated effluents via alteration of physico-chemical characteristics of the water column and enrichment of bacterial community with nonindigenous taxa carrying an arsenal of ARGs, which could contribute to the further propagation of the AR in the natural environment.


Assuntos
Microbiota , Antibacterianos/farmacologia , Croácia , Resistência Microbiana a Medicamentos/genética , Genes Bacterianos , RNA Ribossômico 16S/genética , Águas Residuárias/análise
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA