Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 14.750
Filtrar
Mais filtros

Intervalo de ano de publicação
1.
Cell ; 2024 Aug 29.
Artigo em Inglês | MEDLINE | ID: mdl-39243762

RESUMO

Epithelial-to-mesenchymal transitions (EMTs) and extracellular matrix (ECM) remodeling are distinct yet important processes during carcinoma invasion and metastasis. Transforming growth factor ß (TGF-ß) and RAS, signaling through SMAD and RAS-responsive element-binding protein 1 (RREB1), jointly trigger expression of EMT and fibrogenic factors as two discrete arms of a common transcriptional response in carcinoma cells. Here, we demonstrate that both arms come together to form a program for lung adenocarcinoma metastasis and identify chromatin determinants tying the expression of the constituent genes to TGF-ß and RAS inputs. RREB1 localizes to H4K16acK20ac marks in histone H2A.Z-loaded nucleosomes at enhancers in the fibrogenic genes interleukin-11 (IL11), platelet-derived growth factor-B (PDGFB), and hyaluronan synthase 2 (HAS2), as well as the EMT transcription factor SNAI1, priming these enhancers for activation by a SMAD4-INO80 nucleosome remodeling complex in response to TGF-ß. These regulatory properties segregate the fibrogenic EMT program from RAS-independent TGF-ß gene responses and illuminate the operation and vulnerabilities of a bifunctional program that promotes metastatic outgrowth.

2.
Cell ; 187(8): 1971-1989.e16, 2024 Apr 11.
Artigo em Inglês | MEDLINE | ID: mdl-38521060

RESUMO

Amyotrophic lateral sclerosis (ALS) and frontotemporal lobar degeneration (FTLD) share many clinical, pathological, and genetic features, but a detailed understanding of their associated transcriptional alterations across vulnerable cortical cell types is lacking. Here, we report a high-resolution, comparative single-cell molecular atlas of the human primary motor and dorsolateral prefrontal cortices and their transcriptional alterations in sporadic and familial ALS and FTLD. By integrating transcriptional and genetic information, we identify known and previously unidentified vulnerable populations in cortical layer 5 and show that ALS- and FTLD-implicated motor and spindle neurons possess a virtually indistinguishable molecular identity. We implicate potential disease mechanisms affecting these cell types as well as non-neuronal drivers of pathogenesis. Finally, we show that neuron loss in cortical layer 5 tracks more closely with transcriptional identity rather than cellular morphology and extends beyond previously reported vulnerable cell types.


Assuntos
Esclerose Lateral Amiotrófica , Degeneração Lobar Frontotemporal , Córtex Pré-Frontal , Animais , Humanos , Camundongos , Esclerose Lateral Amiotrófica/genética , Esclerose Lateral Amiotrófica/metabolismo , Esclerose Lateral Amiotrófica/patologia , Demência Frontotemporal/genética , Degeneração Lobar Frontotemporal/genética , Degeneração Lobar Frontotemporal/metabolismo , Degeneração Lobar Frontotemporal/patologia , Perfilação da Expressão Gênica , Neurônios/metabolismo , Córtex Pré-Frontal/metabolismo , Córtex Pré-Frontal/patologia , Análise da Expressão Gênica de Célula Única
3.
Nat Rev Mol Cell Biol ; 25(1): 46-64, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37710009

RESUMO

The forkhead box protein O (FOXO, consisting of FOXO1, FOXO3, FOXO4 and FOXO6) transcription factors are the mammalian orthologues of Caenorhabditis elegans DAF-16, which gained notoriety for its capability to double lifespan in the absence of daf-2 (the gene encoding the worm insulin receptor homologue). Since then, research has provided many mechanistic details on FOXO regulation and FOXO activity. Furthermore, conditional knockout experiments have provided a wealth of data as to how FOXOs control development and homeostasis at the organ and organism levels. The lifespan-extending capabilities of DAF-16/FOXO are highly correlated with their ability to induce stress response pathways. Exogenous and endogenous stress, such as cellular redox stress, are considered the main drivers of the functional decline that characterizes ageing. Functional decline often manifests as disease, and decrease in FOXO activity indeed negatively impacts on major age-related diseases such as cancer and diabetes. In this context, the main function of FOXOs is considered to preserve cellular and organismal homeostasis, through regulation of stress response pathways. Paradoxically, the same FOXO-mediated responses can also aid the survival of dysfunctional cells once these eventually emerge. This general property to control stress responses may underlie the complex and less-evident roles of FOXOs in human lifespan as opposed to model organisms such as C. elegans.


Assuntos
Caenorhabditis elegans , Transdução de Sinais , Animais , Humanos , Caenorhabditis elegans/genética , Caenorhabditis elegans/metabolismo , Transdução de Sinais/genética , Fatores de Transcrição Forkhead/genética , Fatores de Transcrição Forkhead/metabolismo , Envelhecimento/genética , Longevidade/genética , Mamíferos/metabolismo
4.
Nat Immunol ; 24(3): 501-515, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36797499

RESUMO

Blocking pyrimidine de novo synthesis by inhibiting dihydroorotate dehydrogenase is used to treat autoimmunity and prevent expansion of rapidly dividing cell populations including activated T cells. Here we show memory T cell precursors are resistant to pyrimidine starvation. Although the treatment effectively blocked effector T cells, the number, function and transcriptional profile of memory T cells and their precursors were unaffected. This effect occurred in a narrow time window in the early T cell expansion phase when developing effector, but not memory precursor, T cells are vulnerable to pyrimidine starvation. This vulnerability stems from a higher proliferative rate of early effector T cells as well as lower pyrimidine synthesis capacity when compared with memory precursors. This differential sensitivity is a drug-targetable checkpoint that efficiently diminishes effector T cells without affecting the memory compartment. This cell fate checkpoint might therefore lead to new methods to safely manipulate effector T cell responses.


Assuntos
Pirimidinas , Ciclo Celular , Diferenciação Celular
5.
Cell ; 182(4): 843-854.e12, 2020 08 20.
Artigo em Inglês | MEDLINE | ID: mdl-32673567

RESUMO

The SARS-CoV-2 pandemic has unprecedented implications for public health, social life, and the world economy. Because approved drugs and vaccines are limited or not available, new options for COVID-19 treatment and prevention are in high demand. To identify SARS-CoV-2-neutralizing antibodies, we analyzed the antibody response of 12 COVID-19 patients from 8 to 69 days after diagnosis. By screening 4,313 SARS-CoV-2-reactive B cells, we isolated 255 antibodies from different time points as early as 8 days after diagnosis. Of these, 28 potently neutralized authentic SARS-CoV-2 with IC100 as low as 0.04 µg/mL, showing a broad spectrum of variable (V) genes and low levels of somatic mutations. Interestingly, potential precursor sequences were identified in naive B cell repertoires from 48 healthy individuals who were sampled before the COVID-19 pandemic. Our results demonstrate that SARS-CoV-2-neutralizing antibodies are readily generated from a diverse pool of precursors, fostering hope for rapid induction of a protective immune response upon vaccination.


Assuntos
Anticorpos Neutralizantes/isolamento & purificação , Anticorpos Antivirais/isolamento & purificação , Infecções por Coronavirus/imunologia , Pneumonia Viral/imunologia , Anticorpos Neutralizantes/genética , Anticorpos Neutralizantes/imunologia , Anticorpos Antivirais/genética , Anticorpos Antivirais/imunologia , Linfócitos B/imunologia , Betacoronavirus/imunologia , COVID-19 , Humanos , Região Variável de Imunoglobulina/genética , Região Variável de Imunoglobulina/imunologia , Memória Imunológica , Estudos Longitudinais , Pandemias , SARS-CoV-2 , Hipermutação Somática de Imunoglobulina
6.
Immunity ; 55(10): 1924-1939.e5, 2022 10 11.
Artigo em Inglês | MEDLINE | ID: mdl-35985324

RESUMO

SARS-CoV-2 infection and vaccination generates enormous host-response heterogeneity and an age-dependent loss of immune-response quality. How the pre-exposure T cell repertoire contributes to this heterogeneity is poorly understood. We combined analysis of SARS-CoV-2-specific CD4+ T cells pre- and post-vaccination with longitudinal T cell receptor tracking. We identified strong pre-exposure T cell variability that correlated with subsequent immune-response quality and age. High-quality responses, defined by strong expansion of high-avidity spike-specific T cells, high interleukin-21 production, and specific immunoglobulin G, depended on an intact naive repertoire and exclusion of pre-existing memory T cells. In the elderly, T cell expansion from both compartments was severely compromised. Our results reveal that an intrinsic defect of the CD4+ T cell repertoire causes the age-dependent decline of immune-response quality against SARS-CoV-2 and highlight the need for alternative strategies to induce high-quality T cell responses against newly arising pathogens in the elderly.


Assuntos
COVID-19 , SARS-CoV-2 , Idoso , Anticorpos Antivirais , Humanos , Imunidade , Imunoglobulina G , Receptores de Antígenos de Linfócitos T , Vacinação
7.
Nat Immunol ; 19(5): 1-7, 2018 05.
Artigo em Inglês | MEDLINE | ID: mdl-29662171

RESUMO

The cytokine transforming growth factor-ß (TGF-ß) regulates the development and homeostasis of several tissue-resident macrophage populations, including microglia. TGF-ß is not critical for microglia survival but is required for the maintenance of the microglia-specific homeostatic gene signature1,2. Under defined host conditions, circulating monocytes can compete for the microglial niche and give rise to long-lived monocyte-derived macrophages residing in the central nervous system (CNS)3-5. Whether monocytes require TGF-ß for colonization of the microglial niche and maintenance of CNS integrity is unknown. We found that abrogation of TGF-ß signaling in CX3CR1+ monocyte-derived macrophages led to rapid onset of a progressive and fatal demyelinating motor disease characterized by myelin-laden giant macrophages throughout the spinal cord. Tgfbr2-deficient macrophages were characterized by high expression of genes encoding proteins involved in antigen presentation, inflammation and phagocytosis. TGF-ß is thus crucial for the functional integration of monocytes into the CNS microenvironment.


Assuntos
Encéfalo/imunologia , Doenças Desmielinizantes/imunologia , Macrófagos/patologia , Medula Espinal/imunologia , Fator de Crescimento Transformador beta/imunologia , Animais , Encéfalo/metabolismo , Encéfalo/patologia , Doenças Desmielinizantes/metabolismo , Doenças Desmielinizantes/patologia , Macrófagos/imunologia , Macrófagos/metabolismo , Camundongos , Transdução de Sinais , Medula Espinal/metabolismo , Medula Espinal/patologia , Fator de Crescimento Transformador beta/metabolismo
8.
Cell ; 161(4): 724-36, 2015 May 07.
Artigo em Inglês | MEDLINE | ID: mdl-25957681

RESUMO

Histone proteins compact and stabilize the genomes of Eukarya and Archaea. By forming nucleosome(-like) structures they restrict access of DNA-binding transcription regulators to cis-regulatory DNA elements. Dynamic competition between histones and transcription factors is facilitated by different classes of proteins including ATP-dependent remodeling enzymes that control assembly, access, and editing of chromatin. Here, we summarize the knowledge on dynamics underlying transcriptional regulation across the domains of life with a focus on ATP-dependent enzymes in chromatin structure or in TATA-binding protein activity. These insights suggest directions for future studies on the evolution of transcription regulation and chromatin dynamics.


Assuntos
Montagem e Desmontagem da Cromatina , Eucariotos/classificação , Eucariotos/genética , Transcrição Gênica , Archaea/classificação , Archaea/genética , Archaea/metabolismo , Eucariotos/metabolismo , Regulação da Expressão Gênica , Filogenia , RNA Polimerase II/metabolismo , Fatores de Transcrição/metabolismo
10.
Nature ; 633(8029): 442-450, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-39143217

RESUMO

Regulation of neutrophil activation is critical for disease control. Neutrophil extracellular traps (NETs), which are web-like structures composed of DNA and neutrophil-derived proteins, are formed following pro-inflammatory signals; however, if this process is uncontrolled, NETs contribute to disease pathogenesis, exacerbating inflammation and host tissue damage1,2. Here we show that myeloid inhibitory C-type lectin-like (MICL), an inhibitory C-type lectin receptor, directly recognizes DNA in NETs; this interaction is vital to regulate neutrophil activation. Loss or inhibition of MICL functionality leads to uncontrolled NET formation through the ROS-PAD4 pathway and the development of an auto-inflammatory feedback loop. We show that in the context of rheumatoid arthritis, such dysregulation leads to exacerbated pathology in both mouse models and in human patients, where autoantibodies to MICL inhibit key functions of this receptor. Of note, we also detect similarly inhibitory anti-MICL autoantibodies in patients with other diseases linked to aberrant NET formation, including lupus and severe COVID-19. By contrast, dysregulation of NET release is protective during systemic infection with the fungal pathogen Aspergillus fumigatus. Together, we show that the recognition of NETs by MICL represents a fundamental autoregulatory pathway that controls neutrophil activity and NET formation.


Assuntos
Artrite Reumatoide , Armadilhas Extracelulares , Ativação de Neutrófilo , Neutrófilos , Animais , Feminino , Humanos , Masculino , Camundongos , Artrite Reumatoide/imunologia , Artrite Reumatoide/patologia , Artrite Reumatoide/metabolismo , Aspergillus fumigatus/imunologia , Aspergillus fumigatus/patogenicidade , Autoanticorpos/imunologia , Autoanticorpos/farmacologia , COVID-19/imunologia , COVID-19/virologia , Modelos Animais de Doenças , DNA/metabolismo , DNA/imunologia , Armadilhas Extracelulares/metabolismo , Armadilhas Extracelulares/imunologia , Retroalimentação Fisiológica , Inflamação/imunologia , Inflamação/metabolismo , Lectinas Tipo C/antagonistas & inibidores , Lectinas Tipo C/deficiência , Lectinas Tipo C/imunologia , Lectinas Tipo C/metabolismo , Lúpus Eritematoso Sistêmico/imunologia , Lúpus Eritematoso Sistêmico/metabolismo , Camundongos Endogâmicos C57BL , Neutrófilos/imunologia , Neutrófilos/metabolismo , Proteína-Arginina Desiminase do Tipo 4/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Receptores Mitogênicos/antagonistas & inibidores , Receptores Mitogênicos/deficiência , Receptores Mitogênicos/imunologia , Receptores Mitogênicos/metabolismo
11.
Nature ; 2024 Sep 25.
Artigo em Inglês | MEDLINE | ID: mdl-39322662

RESUMO

Endocytosis and lysosomal trafficking of cell surface receptors can be triggered by endogenous ligands. Therapeutic approaches such as lysosome-targeting chimaeras1,2 (LYTACs) and cytokine receptor-targeting chimeras3 (KineTACs) have used this to target specific proteins for degradation by fusing modified native ligands to target binding proteins. Although powerful, these approaches can be limited by competition with native ligands and requirements for chemical modification that limit genetic encodability and can complicate manufacturing, and, more generally, there may be no native ligands that stimulate endocytosis through a given receptor. Here we describe computational design approaches for endocytosis-triggering binding proteins (EndoTags) that overcome these challenges. We present EndoTags for insulin-like growth factor 2 receptor (IGF2R) and asialoglycoprotein receptor (ASGPR), sortilin and transferrin receptors, and show that fusing these tags to soluble or transmembrane target protein binders leads to lysosomal trafficking and target degradation. As these receptors have different tissue distributions, the different EndoTags could enable targeting of degradation to different tissues. EndoTag fusion to a PD-L1 antibody considerably increases efficacy in a mouse tumour model compared to antibody alone. The modularity and genetic encodability of EndoTags enables AND gate control for higher-specificity targeted degradation, and the localized secretion of degraders from engineered cells. By promoting endocytosis, EndoTag fusion increases signalling through an engineered ligand-receptor system by nearly 100-fold. EndoTags have considerable therapeutic potential as targeted degradation inducers, signalling activators for endocytosis-dependent pathways, and cellular uptake inducers for targeted antibody-drug and antibody-RNA conjugates.

12.
Nat Immunol ; 18(1): 54-63, 2017 01.
Artigo em Inglês | MEDLINE | ID: mdl-27721430

RESUMO

Genes and pathways in which inactivation dampens tissue inflammation present new opportunities for understanding the pathogenesis of common human inflammatory diseases, including inflammatory bowel disease, rheumatoid arthritis and multiple sclerosis. We identified a mutation in the gene encoding the deubiquitination enzyme USP15 (Usp15L749R) that protected mice against both experimental cerebral malaria (ECM) induced by Plasmodium berghei and experimental autoimmune encephalomyelitis (EAE). Combining immunophenotyping and RNA sequencing in brain (ECM) and spinal cord (EAE) revealed that Usp15L749R-associated resistance to neuroinflammation was linked to dampened type I interferon responses in situ. In hematopoietic cells and in resident brain cells, USP15 was coexpressed with, and functionally acted together with the E3 ubiquitin ligase TRIM25 to positively regulate type I interferon responses and to promote pathogenesis during neuroinflammation. The USP15-TRIM25 dyad might be a potential target for intervention in acute or chronic states of neuroinflammation.


Assuntos
Proteínas de Ligação a DNA/metabolismo , Encefalomielite Autoimune Experimental/imunologia , Malária Cerebral/imunologia , Inflamação Neurogênica/imunologia , Fatores de Transcrição/metabolismo , Proteases Específicas de Ubiquitina/metabolismo , Animais , Proteínas de Ligação a DNA/genética , Encefalomielite Autoimune Experimental/tratamento farmacológico , Células HEK293 , Humanos , Imunidade Inata , Interferon Tipo I/metabolismo , Malária Cerebral/tratamento farmacológico , Camundongos , Camundongos da Linhagem 129 , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Terapia de Alvo Molecular , Glicoproteína Mielina-Oligodendrócito/imunologia , Inflamação Neurogênica/tratamento farmacológico , Fragmentos de Peptídeos/imunologia , Plasmodium berghei/imunologia , Fatores de Transcrição/genética , Proteases Específicas de Ubiquitina/genética
13.
Immunity ; 53(6): 1258-1271.e5, 2020 12 15.
Artigo em Inglês | MEDLINE | ID: mdl-33296686

RESUMO

CD4+ T cells reactive against SARS-CoV-2 can be found in unexposed individuals, and these are suggested to arise in response to common cold coronavirus (CCCoV) infection. Here, we utilized SARS-CoV-2-reactive CD4+ T cell enrichment to examine the antigen avidity and clonality of these cells, as well as the relative contribution of CCCoV cross-reactivity. SARS-CoV-2-reactive CD4+ memory T cells were present in virtually all unexposed individuals examined, displaying low functional avidity and multiple, highly variable cross-reactivities that were not restricted to CCCoVs. SARS-CoV-2-reactive CD4+ T cells from COVID-19 patients lacked cross-reactivity to CCCoVs, irrespective of strong memory T cell responses against CCCoV in all donors analyzed. In severe but not mild COVID-19, SARS-CoV-2-specific T cells displayed low functional avidity and clonality, despite increased frequencies. Our findings identify low-avidity CD4+ T cell responses as a hallmark of severe COVID-19 and argue against a protective role for CCCoV-reactive T cells in SARS-CoV-2 infection.


Assuntos
Linfócitos T CD4-Positivos/imunologia , COVID-19/imunologia , Receptores de Antígenos de Linfócitos T/metabolismo , Rhinovirus/imunologia , SARS-CoV-2/imunologia , Antígenos Virais/imunologia , Células Cultivadas , Reações Cruzadas , Progressão da Doença , Exposição Ambiental , Humanos , Memória Imunológica , Ativação Linfocitária , Ligação Proteica , Índice de Gravidade de Doença , Especificidade do Receptor de Antígeno de Linfócitos T
14.
CA Cancer J Clin ; 72(4): 308-314, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35325473

RESUMO

Twenty years after the September 11th, 2001 terrorist attacks, the association between exposures present at the World Trade Center (WTC) site and the risk of several specific types of cancer has been reported among rescue and recovery workers. The authors' objective was to conduct an updated review of these data. Most studies have found elevated rates of both prostate and thyroid cancers compared with rates in the general population, and some have reported statistically significant differences for the rates of all cancers as well. Studies including a larger combined cohort of WTC-exposed rescue and recovery workers from 3 main cohorts have since replicated findings for these cancers, with additional years of follow-up. Among this combined cohort, although a lower-than-expected standardized incidence ratio for all cancers was observed, WTC exposure was also related to an increased risk of cutaneous melanoma and tonsil cancer. Importantly, another study found that WTC-exposed rescue and recovery workers who are enrolled in the federally funded medical monitoring and treatment program experienced improved survival post-cancer diagnosis compared with New York state patients with cancer. On the basis of these combined cohort studies, the full effect of WTC exposure on cancer risk is becoming clearer. Consequently, the authors believe that surveillance of those with WTC exposure should be continued, and in-depth analysis of epidemiologic, molecular, and clinical aspects of specific cancers in these workers should be pursued.


Assuntos
Melanoma , Exposição Ocupacional , Ataques Terroristas de 11 de Setembro , Neoplasias Cutâneas , Estudos de Coortes , Humanos , Masculino , Exposição Ocupacional/efeitos adversos , Trabalho de Resgate
15.
Nature ; 620(7975): 855-862, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37532930

RESUMO

Patients from historically under-represented racial and ethnic groups are enrolled in cancer clinical trials at disproportionately low rates in the USA1-3. As these patients often have limited English proficiency4-7, we hypothesized that one barrier to their inclusion is the cost to investigators of translating consent documents. To test this hypothesis, we evaluated more than 12,000 consent events at a large cancer centre and assessed whether patients requiring translated consent documents would sign consent documents less frequently in studies lacking industry sponsorship (for which the principal investigator pays the translation costs) than for industry-sponsored studies (for which the translation costs are covered by the sponsor). Here we show that the proportion of consent events for patients with limited English proficiency in studies not sponsored by industry was approximately half of that seen in industry-sponsored studies. We also show that among those signing consent documents, the proportion of consent documents translated into the patient's primary language in studies without industry sponsorship was approximately half of that seen in industry-sponsored studies. The results suggest that the cost of consent document translation in trials not sponsored by industry could be a potentially modifiable barrier to the inclusion of patients with limited English proficiency.


Assuntos
Ensaios Clínicos como Assunto , Barreiras de Comunicação , Termos de Consentimento , Indústria Farmacêutica , Pesquisadores , Traduções , Humanos , Termos de Consentimento/economia , Tradução , Ensaios Clínicos como Assunto/economia , Indústria Farmacêutica/economia , Pesquisadores/economia
16.
Nature ; 622(7984): 775-783, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37821706

RESUMO

Latin America continues to be severely underrepresented in genomics research, and fine-scale genetic histories and complex trait architectures remain hidden owing to insufficient data1. To fill this gap, the Mexican Biobank project genotyped 6,057 individuals from 898 rural and urban localities across all 32 states in Mexico at a resolution of 1.8 million genome-wide markers with linked complex trait and disease information creating a valuable nationwide genotype-phenotype database. Here, using ancestry deconvolution and inference of identity-by-descent segments, we inferred ancestral population sizes across Mesoamerican regions over time, unravelling Indigenous, colonial and postcolonial demographic dynamics2-6. We observed variation in runs of homozygosity among genomic regions with different ancestries reflecting distinct demographic histories and, in turn, different distributions of rare deleterious variants. We conducted genome-wide association studies (GWAS) for 22 complex traits and found that several traits are better predicted using the Mexican Biobank GWAS compared to the UK Biobank GWAS7,8. We identified genetic and environmental factors associating with trait variation, such as the length of the genome in runs of homozygosity as a predictor for body mass index, triglycerides, glucose and height. This study provides insights into the genetic histories of individuals in Mexico and dissects their complex trait architectures, both crucial for making precision and preventive medicine initiatives accessible worldwide.


Assuntos
Bancos de Espécimes Biológicos , Genética Médica , Genoma Humano , Genômica , Hispânico ou Latino , Humanos , Glicemia/genética , Glicemia/metabolismo , Estatura/genética , Índice de Massa Corporal , Interação Gene-Ambiente , Marcadores Genéticos/genética , Estudo de Associação Genômica Ampla , Hispânico ou Latino/classificação , Hispânico ou Latino/genética , Homozigoto , México , Fenótipo , Triglicerídeos/sangue , Triglicerídeos/genética , Reino Unido , Genoma Humano/genética
17.
Nature ; 620(7974): 582-588, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37558875

RESUMO

Owing to a long history of anthropogenic pressures, freshwater ecosystems are among the most vulnerable to biodiversity loss1. Mitigation measures, including wastewater treatment and hydromorphological restoration, have aimed to improve environmental quality and foster the recovery of freshwater biodiversity2. Here, using 1,816 time series of freshwater invertebrate communities collected across 22 European countries between 1968 and 2020, we quantified temporal trends in taxonomic and functional diversity and their responses to environmental pressures and gradients. We observed overall increases in taxon richness (0.73% per year), functional richness (2.4% per year) and abundance (1.17% per year). However, these increases primarily occurred before the 2010s, and have since plateaued. Freshwater communities downstream of dams, urban areas and cropland were less likely to experience recovery. Communities at sites with faster rates of warming had fewer gains in taxon richness, functional richness and abundance. Although biodiversity gains in the 1990s and 2000s probably reflect the effectiveness of water-quality improvements and restoration projects, the decelerating trajectory in the 2010s suggests that the current measures offer diminishing returns. Given new and persistent pressures on freshwater ecosystems, including emerging pollutants, climate change and the spread of invasive species, we call for additional mitigation to revive the recovery of freshwater biodiversity.


Assuntos
Biodiversidade , Conservação dos Recursos Hídricos , Monitoramento Ambiental , Água Doce , Invertebrados , Animais , Espécies Introduzidas/tendências , Invertebrados/classificação , Invertebrados/fisiologia , Europa (Continente) , Atividades Humanas , Conservação dos Recursos Hídricos/estatística & dados numéricos , Conservação dos Recursos Hídricos/tendências , Hidrobiologia , Fatores de Tempo , Produção Agrícola , Urbanização , Aquecimento Global , Poluentes da Água/análise
18.
Nature ; 611(7934): 115-123, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-36180795

RESUMO

Previous genome-wide association studies (GWASs) of stroke - the second leading cause of death worldwide - were conducted predominantly in populations of European ancestry1,2. Here, in cross-ancestry GWAS meta-analyses of 110,182 patients who have had a stroke (five ancestries, 33% non-European) and 1,503,898 control individuals, we identify association signals for stroke and its subtypes at 89 (61 new) independent loci: 60 in primary inverse-variance-weighted analyses and 29 in secondary meta-regression and multitrait analyses. On the basis of internal cross-ancestry validation and an independent follow-up in 89,084 additional cases of stroke (30% non-European) and 1,013,843 control individuals, 87% of the primary stroke risk loci and 60% of the secondary stroke risk loci were replicated (P < 0.05). Effect sizes were highly correlated across ancestries. Cross-ancestry fine-mapping, in silico mutagenesis analysis3, and transcriptome-wide and proteome-wide association analyses revealed putative causal genes (such as SH3PXD2A and FURIN) and variants (such as at GRK5 and NOS3). Using a three-pronged approach4, we provide genetic evidence for putative drug effects, highlighting F11, KLKB1, PROC, GP1BA, LAMC2 and VCAM1 as possible targets, with drugs already under investigation for stroke for F11 and PROC. A polygenic score integrating cross-ancestry and ancestry-specific stroke GWASs with vascular-risk factor GWASs (integrative polygenic scores) strongly predicted ischaemic stroke in populations of European, East Asian and African ancestry5. Stroke genetic risk scores were predictive of ischaemic stroke independent of clinical risk factors in 52,600 clinical-trial participants with cardiometabolic disease. Our results provide insights to inform biology, reveal potential drug targets and derive genetic risk prediction tools across ancestries.


Assuntos
Descoberta de Drogas , Predisposição Genética para Doença , AVC Isquêmico , Humanos , Isquemia Encefálica/genética , Predisposição Genética para Doença/genética , Estudo de Associação Genômica Ampla , AVC Isquêmico/genética , Terapia de Alvo Molecular , Herança Multifatorial , Europa (Continente)/etnologia , Ásia Oriental/etnologia , África/etnologia
19.
EMBO J ; 42(1): e111485, 2023 01 04.
Artigo em Inglês | MEDLINE | ID: mdl-36385434

RESUMO

Sleep intensity is adjusted by the length of previous awake time, and under tight homeostatic control by protein phosphorylation. Here, we establish microglia as a new cellular component of the sleep homeostasis circuit. Using quantitative phosphoproteomics of the mouse frontal cortex, we demonstrate that microglia-specific deletion of TNFα perturbs thousands of phosphorylation sites during the sleep period. Substrates of microglial TNFα comprise sleep-related kinases such as MAPKs and MARKs, and numerous synaptic proteins, including a subset whose phosphorylation status encodes sleep need and determines sleep duration. As a result, microglial TNFα loss attenuates the build-up of sleep need, as measured by electroencephalogram slow-wave activity and prevents immediate compensation for loss of sleep. Our data suggest that microglia control sleep homeostasis by releasing TNFα which acts on neuronal circuitry through dynamic control of phosphorylation.


Assuntos
Microglia , Fator de Necrose Tumoral alfa , Camundongos , Animais , Microglia/metabolismo , Fosforilação , Fator de Necrose Tumoral alfa/metabolismo , Sono/fisiologia , Homeostase/fisiologia
20.
Am J Hum Genet ; 111(1): 70-81, 2024 Jan 04.
Artigo em Inglês | MEDLINE | ID: mdl-38091987

RESUMO

Protein-truncating variants (PTVs) near the 3' end of genes may escape nonsense-mediated decay (NMD). PTVs in the NMD-escape region (PTVescs) can cause Mendelian disease but are difficult to interpret given their varying impact on protein function. Previously, PTVesc burden was assessed in an epilepsy cohort, but no large-scale analysis has systematically evaluated these variants in rare disease. We performed a retrospective analysis of 29,031 neurodevelopmental disorder (NDD) parent-offspring trios referred for clinical exome sequencing to identify PTVesc de novo mutations (DNMs). We identified 1,376 PTVesc DNMs and 133 genes that were significantly enriched (binomial p < 0.001). The PTVesc-enriched genes included those with PTVescs previously described to cause dominant Mendelian disease (e.g., SEMA6B, PPM1D, and DAGLA). We annotated ClinVar variants for PTVescs and identified 948 genes with at least one high-confidence pathogenic variant. Twenty-two known Mendelian PTVesc-enriched genes had no prior evidence of PTVesc-associated disease. We found 22 additional PTVesc-enriched genes that are not well established to be associated with Mendelian disease, several of which showed phenotypic similarity between individuals harboring PTVesc variants in the same gene. Four individuals with PTVesc mutations in RAB1A had similar phenotypes including NDD and spasticity. PTVesc mutations in IRF2BP1 were found in two individuals who each had severe immunodeficiency manifesting in NDD. Three individuals with PTVesc mutations in LDB1 all had NDD and multiple congenital anomalies. Using a large-scale, systematic analysis of DNMs, we extend the mutation spectrum for known Mendelian disease-associated genes and identify potentially novel disease-associated genes.


Assuntos
Epilepsia , Transtornos do Neurodesenvolvimento , Humanos , Estudos Retrospectivos , Mutação/genética , Epilepsia/genética , Fenótipo , Transtornos do Neurodesenvolvimento/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA