RESUMO
Hypophosphatasia (HPP) is a rare inborn error of metabolism that presents variably in both age of onset and severity. HPP is caused by pathogenic variants in the ALPL gene, resulting in low activity of tissue nonspecific alkaline phosphatase (TNSALP). Patients with HPP tend have a similar pattern of elevation of natural substrates that can be used to aid in diagnosis. No formal diagnostic guidelines currently exist for the diagnosis of this condition in children, adolescents, or adults. The International HPP Working Group is a comprised of a multidisciplinary team of experts from Europe and North America who have expertise in the diagnosis and management of patients with HPP. This group reviewed 93 papers through a Medline, Medline In-Process, and Embase search for the terms "HPP" and "hypophosphatasia" between 2005 and 2020 and that explicitly address either the diagnosis of HPP in children, clinical manifestations of HPP in children, or both. Two reviewers independently evaluated each full-text publication for eligibility and studies were included if they were narrative reviews or case series/reports that concerned diagnosis of pediatric HPP or included clinical aspects of patients diagnosed with HPP. This review focused on 15 initial clinical manifestations that were selected by a group of clinical experts.The highest agreement in included literature was for pathogenic or likely pathogenic ALPL variant, elevation of natural substrates, and early loss of primary teeth. The highest prevalence was similar, including these same three parameters and including decreased bone mineral density. Additional parameters had less agreement and were less prevalent. These were organized into three major and six minor criteria, with diagnosis of HPP being made when two major or one major and two minor criteria are present.
Assuntos
Hipofosfatasia , Adulto , Criança , Humanos , Adolescente , Hipofosfatasia/diagnóstico , Hipofosfatasia/genética , Fosfatase Alcalina/genética , Europa (Continente) , Prevalência , MutaçãoRESUMO
Hypophosphatasia (HPP) is an inborn error of metabolism caused by reduced or absent activity of the tissue non-specific alkaline phosphatase (TNSALP) enzyme, resulting from pathogenic variants in the ALPL gene. Clinical presentation of HPP is highly variable, including lethal and severe forms in neonates and infants, a benign perinatal form, mild forms manifesting in adulthood, and odonto-HPP. Diagnosis of HPP remains a challenge in adults, as signs and symptoms may be mild and non-specific. Disease presentation varies widely; there are no universal signs or symptoms, and the disease often remains underdiagnosed or misdiagnosed, particularly by clinicians who are not familiar with this rare disorder. The absence of diagnosis or a delayed diagnosis may prevent optimal management for patients with this condition. Formal guidelines for the diagnosis of adults with HPP do not exist, complicating efforts for consistent diagnosis. To address this issue, the HPP International Working Group selected 119 papers that explicitly address the diagnosis of HPP in adults through a Medline, Medline In-Process, and Embase search for the terms "hypophosphatasia" and "HPP," and evaluated the pooled prevalence of 17 diagnostic characteristics, initially selected by a group of HPP clinical experts, in eligible studies and in patients included in these studies. Six diagnostic findings showed a pooled prevalence value over 50% and were considered for inclusion as major diagnostic criteria. Based on these results and according to discussion and consideration among members of the Working Group, we finally defined four major diagnostic criteria and five minor diagnostic criteria for HPP in adults. Authors suggested the integrated use of the identified major and minor diagnostic criteria, which either includes two major criteria, or one major criterion and two minor criteria, for the diagnosis of HPP in adults.
Assuntos
Hipofosfatasia , Lactente , Adulto , Recém-Nascido , Humanos , Hipofosfatasia/diagnóstico , Hipofosfatasia/epidemiologia , Hipofosfatasia/genética , Fosfatase Alcalina/genética , Mutação , PrevalênciaRESUMO
BACKGROUND: This manuscript provides a summary of the current evidence to support the criteria for diagnosing a child or adult with hypophosphatasia (HPP). The diagnosis of HPP is made on the basis of integrating clinical features, laboratory profile, radiographic features of the condition, and DNA analysis identifying the presence of a pathogenic variant of the tissue nonspecific alkaline phosphatase gene (ALPL). Often, the diagnosis of HPP is significantly delayed in both adults and children, and updated diagnostic criteria are required to keep pace with our evolving understanding regarding the relationship between ALPL genotype and associated HPP clinical features. METHODS: An International Working Group (IWG) on HPP was formed, comprised of a multidisciplinary team of experts from Europe and North America with expertise in the diagnosis and management of patients with HPP. Methodologists (Romina Brignardello-Petersen and Gordon Guyatt) and their team supported the IWG and conducted systematic reviews following the GRADE methodology, and this provided the basis for the recommendations. RESULTS: The IWG completed systematic reviews of the literature, including case reports and expert opinion papers describing the phenotype of patients with HPP. The published data are largely retrospective and include a relatively small number of patients with this rare condition. It is anticipated that further knowledge will lead to improvement in the quality of genotype-phenotype reporting in this condition. CONCLUSION: Following consensus meetings, agreement was reached regarding the major and minor criteria that can assist in establishing a clinical diagnosis of HPP in adults and children.
Assuntos
Hipofosfatasia , Adulto , Criança , Humanos , Hipofosfatasia/diagnóstico , Hipofosfatasia/genética , Mutação , Estudos Retrospectivos , Fosfatase Alcalina/genética , Genótipo , FenótipoRESUMO
A wide range of 3-selenylindoles were synthesized via an eco-friendly approach that uses Oxone® as the oxidant in the presence of a catalytic amount of iodine. This mild and economical protocol showed broad functional group tolerance and operational simplicity. A series of novel selenylindoles bearing a benzenesulfonamide moiety were also synthesized and evaluated as carbonic anhydrase inhibitors of the human (h) isoforms hCa I, II, IX, and XII, which are involved in pathologies such as glaucoma and cancer. Several derivatives showed excellent inhibitory activity towards these isoforms in the nanomolar range, lower than that shown by acetazolamide.
Assuntos
Benzenossulfonamidas , Inibidores da Anidrase Carbônica , Anidrases Carbônicas , Indóis , Iodo , Oxirredução , Sulfonamidas , Inibidores da Anidrase Carbônica/química , Inibidores da Anidrase Carbônica/farmacologia , Inibidores da Anidrase Carbônica/síntese química , Sulfonamidas/química , Sulfonamidas/farmacologia , Sulfonamidas/síntese química , Humanos , Anidrases Carbônicas/metabolismo , Indóis/química , Indóis/farmacologia , Indóis/síntese química , Iodo/química , Compostos Organosselênicos/química , Compostos Organosselênicos/farmacologia , Compostos Organosselênicos/síntese química , Relação Estrutura-Atividade , Estrutura MolecularRESUMO
Wnt signaling and its bone tissue-specific inhibitor sclerostin are key regulators of bone homeostasis. The therapeutic potential of anti-sclerostin antibodies (Scl-Abs), for bone mass recovery and fragility fracture prevention in low bone mass phenotypes, has been supported by animal studies. The Scl-Ab romosozumab is currently used for osteoporosis treatment. INTRODUCTION: Wnt signaling is a key regulator of skeletal development and homeostasis; germinal mutations affecting genes encoding components, inhibitors, and enhancers of the Wnt pathways were shown to be responsible for the development of rare congenital metabolic bone disorders. Sclerostin is a bone tissue-specific inhibitor of the Wnt/ß-catenin pathway, secreted by osteocytes, negatively regulating osteogenic differentiation and bone formation, and promoting osteoclastogenesis and bone resorption. PURPOSE AND METHODS: Here, we reviewed current knowledge on the role of sclerostin and Wnt pathways in bone metabolism and skeletal disorders, and on the state of the art of therapy with sclerostin-neutralizing antibodies in low-bone-mass diseases. RESULTS: Various in vivo studies on animal models of human low-bone-mass diseases showed that targeting sclerostin to recover bone mass, restore bone strength, and prevent fragility fracture was safe and effective in osteoporosis, osteogenesis imperfecta, and osteoporosis pseudoglioma. Currently, only treatment with romosozumab, a humanized monoclonal anti-sclerostin antibody, has been approved in human clinical practice for the treatment of osteoporosis, showing a valuable capability to increase BMD at various skeletal sites and reduce the occurrence of new vertebral, non-vertebral, and hip fragility fractures in treated male and female osteoporotic patients. CONCLUSIONS: Preclinical studies demonstrated safety and efficacy of therapy with anti-sclerostin monoclonal antibodies in the preservation/restoration of bone mass and prevention of fragility fractures in low-bone-mass clinical phenotypes, other than osteoporosis, to be validated by clinical studies for their approved translation into prevalent clinical practice.
Assuntos
Fraturas Ósseas , Osteoporose , Animais , Humanos , Masculino , Feminino , Osteogênese , Via de Sinalização Wnt/fisiologia , Osteoporose/tratamento farmacológico , Osteoporose/metabolismo , Osso e Ossos/metabolismo , Densidade Óssea , Anticorpos Monoclonais Humanizados/farmacologia , Anticorpos Monoclonais Humanizados/uso terapêutico , Fraturas Ósseas/tratamento farmacológicoRESUMO
This review describes, from a chemical point of view, the top "blockbuster" small molecule orphan drugs according to their forecasted sales in 2026. Orphan drugs are intended for the treatment, prevention, or diagnosis of a rare disease or condition. These molecules are mostly addressed to the treatment of rare forms of cancer. The respiratory and central nervous systems represent other common therapeutic subcategories. This work will show how the orphan drugs market has significantly grown and will account for a consistent part of prescriptions by 2026.
Assuntos
Neoplasias , Produção de Droga sem Interesse Comercial , Humanos , Doenças Raras/tratamento farmacológico , Neoplasias/tratamento farmacológico , ComércioRESUMO
Serum phosphate concentration is regulated by renal phosphate reabsorption and mediated by sodium-phosphate cotransporters. Germline mutations in genes encoding these cotransporters have been associated with clinical phenotypes, variably characterized by hyperphosphaturia, hypophosphatemia, recurrent kidney stones, skeletal demineralization, and early onset osteoporosis. We reported a 33-year-old male patient presenting a history of recurrent nephrolithiasis and early onset osteopenia in the lumbar spine and femur. He was tested, through next generation sequencing (NGS), by using a customized multigenic panel containing 33 genes, whose mutations are known to be responsible for the development of congenital parathyroid diseases. Two further genes, SLC34A1 and SLC34A3, encoding two sodium-phosphate cotransporters, were additionally tested. A novel germline heterozygous mutation was identified in the SLC34A1 gene, c.1627G>T (p.Gly543Cys), currently not reported in databases of human gene mutations and scientific literature. SLC34A1 germline heterozygous mutations have been associated with the autosomal dominant hypophosphatemic nephrolithiasis/osteoporosis type 1 (NPHLOP1). Consistently, alongside the clinical features of NPHLOP1, our patient experienced recurrent nephrolithiasis and lumbar and femoral osteopenia at a young age. Genetic screening for the p.Gly453Cys variant and the clinical characterization of his first-degree relatives associated the presence of the variant in one younger brother, presenting renal colic and microlithiasis, suggesting p.Gly453Cys is possibly associated with renal altered function in the NPHLOP1 phenotype.
Assuntos
Raquitismo Hipofosfatêmico Familiar , Nefrolitíase , Osteoporose , Humanos , Masculino , Adulto , Nefrolitíase/complicações , Nefrolitíase/genética , Raquitismo Hipofosfatêmico Familiar/genética , Mutação , Fosfatos/metabolismo , Proteínas Cotransportadoras de Sódio-Fosfato/genética , Sódio , Proteínas Cotransportadoras de Sódio-Fosfato Tipo IIaRESUMO
Osteoporosis is characterized by the alteration of bone homeostasis due to an imbalance between osteoclastic bone resorption and osteoblastic bone formation. Estrogen deficiency causes bone loss and postmenopausal osteoporosis, the pathogenesis of which also involves oxidative stress, inflammatory processes, and the dysregulation of the expression of microRNAs (miRNAs) that control gene expression at post-transcriptional levels. Oxidative stress, due to an increase in reactive oxygen species (ROS), proinflammatory mediators and altered levels of miRNAs enhance osteoclastogenesis and reduce osteoblastogenesis through mechanisms involving the activation of MAPK and transcription factors. The present review summarizes the principal molecular mechanisms involved in the role of ROS and proinflammatory cytokines on osteoporosis. Moreover, it highlights the interplay among altered miRNA levels, oxidative stress, and an inflammatory state. In fact, ROS, by activating the transcriptional factors, can affect miRNA expression, and miRNAs can regulate ROS production and inflammatory processes. Therefore, the present review should help in identifying targets for the development of new therapeutic approaches to osteoporotic treatment and improve the quality of life of patients.
Assuntos
MicroRNAs , Osteoporose , Humanos , MicroRNAs/genética , Espécies Reativas de Oxigênio , Qualidade de Vida , Osteoporose/metabolismo , Estresse Oxidativo/fisiologia , Osteogênese/genética , Fatores de Transcrição/metabolismo , InflamaçãoRESUMO
A new protocol for the synthesis of N-vinyl azoles using vinyl selenones and azoles in the presence of potassium hydroxide was developed. This reaction proceeded under mild and transition metal-free conditions through an addition/elimination cascade process. Both aromatic and aliphatic vinyl selenones and various mono-, bi- and tri-cyclic azoles can be tolerated and give terminal N-vinyl azoles in moderate to high yields. A plausible mechanism is also proposed.
RESUMO
This review describes the recent Food and Drug Administration (FDA)-approved drugs (in the year 2021) containing at least one halogen atom (covalently bound). The structures proposed throughout this work are grouped according to their therapeutical use. Their synthesis is presented as well. The number of halogenated molecules that are reaching the market is regularly preserved, and 14 of the 50 molecules approved by the FDA in the last year contain halogens. This underlines the emergent role of halogens and, in particular, of fluorine and chlorine in the preparation of drugs for the treatment of several diseases such as viral infections, several types of cancer, cardiovascular disease, multiple sclerosis, migraine and inflammatory diseases such as vasculitis.
Assuntos
HalogêniosRESUMO
OBJECTIVE: The purpose of this study was to examine the effects of submaximal isometric neck muscle fatigue and manual therapy on wrist joint position sense (JPS) within healthy individuals and individuals with subclinical neck pain (SCNP). METHODS: Twelve healthy participants and 12 participants with SCNP were recruited. Each group completed 2 sessions, with 48 hours between sessions. On day 1, both groups performed 2 wrist JPS tests using a robotic device. The tests were separated by a submaximal isometric fatigue protocol for the cervical extensor muscles (CEM). On day 2, both groups performed a wrist JPS test, followed by a cervical treatment consisting of manual therapy (SCNP) or neck rest (20 minutes, control group) and another wrist JPS test. Joint position sense was measured as the participant's ability to recreate a previously presented wrist angle. Each wrist JPS test included 12 targets, 6 into wrist flexion and 6 into wrist extension. Kinematic data from the robot established absolute, variability, and constant error. RESULTS: Absolute error significantly decreased (P = .01) from baseline to post-fatigue in the SCNP group (baseline = 4.48 ± 1.58°; post-fatigue = 3.90 ± 1.45°) and increased in the control group (baseline = 3.12 ± 0.98°; post-fatigue = 3.81 ± 0.90°). The single session of manual cervical treatment significantly decreased absolute error in participants with SCNP (P = .004). CONCLUSION: This study demonstrated that neck pain or fatigue can lead to altered afferent input to the central nervous system and can affect wrist JPS. Our findings demonstrate that acute wrist proprioception may be improved in individuals with SCNP by a single cervical manual therapy session.
Assuntos
Fadiga Muscular , Manipulações Musculoesqueléticas , Humanos , Fadiga Muscular/fisiologia , Cervicalgia/terapia , Propriocepção/fisiologia , Punho , Articulação do PunhoRESUMO
A three-component synthesis of novel spirooxindole-tetrahydropyrrolizines from secondary α-aminoacids, isatins and vinyl selenones has been disclosed. Products were formed in good yields and high diastereoselectivity by 1,3-dipolar cycloaddition of in situ generated azomethine ylides followed by spontaneous elimination of benzeneseleninic acid. Good regioselectivities with aryl substituted vinyl selenones were observed. The method showed good functional group tolerance, providing a direct approach to biologically relevant spirooxindoles under mild reaction conditions.
RESUMO
Multiple endocrine neoplasia type 1 (MEN1) is a rare autosomal dominant inherited multiple cancer syndrome of neuroendocrine tissues. Tumors are caused by an inherited germinal heterozygote inactivating mutation of the MEN1 tumor suppressor gene, followed by a somatic loss of heterozygosity (LOH) of the MEN1 gene in target neuroendocrine cells, mainly at parathyroids, pancreas islets, and anterior pituitary. Over 1500 different germline and somatic mutations of the MEN1 gene have been identified, but the syndrome is completely missing a direct genotype-phenotype correlation, thus supporting the hypothesis that exogenous and endogenous factors, other than MEN1 specific mutation, are involved in MEN1 tumorigenesis and definition of individual clinical phenotype. Epigenetic factors, such as microRNAs (miRNAs), are strongly suspected to have a role in MEN1 tumor initiation and development. Recently, a direct autoregulatory network between miR-24, MEN1 mRNA, and menin was demonstrated in parathyroids and endocrine pancreas, showing a miR-24-induced silencing of menin expression that could have a key role in initiation of tumors in MEN1-target neuroendocrine cells. Here, we review the current knowledge on the post-transcriptional regulation of MEN1 and menin expression by miR-24, and its possible direct role in MEN1 syndrome, describing the possibility and the potential approaches to target and silence this miRNA, to permit the correct expression of the wild type menin, and thereby prevent the development of cancers in the target tissues.
Assuntos
Terapia Genética , MicroRNAs/genética , Terapia de Alvo Molecular , Neoplasia Endócrina Múltipla Tipo 1/genética , Regiões 3' não Traduzidas , Animais , Antagomirs/farmacologia , Antagomirs/uso terapêutico , Cromossomos Humanos Par 19/genética , Cromossomos Humanos Par 9/genética , Dano ao DNA , Retroalimentação Fisiológica , Previsões , Regulação Neoplásica da Expressão Gênica , Redes Reguladoras de Genes , Humanos , Neoplasia Endócrina Múltipla Tipo 1/metabolismo , Neoplasia Endócrina Múltipla Tipo 1/terapia , Proteínas de Neoplasias/antagonistas & inibidores , Proteínas de Neoplasias/genética , Proteínas de Neoplasias/metabolismo , Neoplasias/genética , Neoplasias/metabolismo , Neoplasias/patologia , Isoformas de Proteínas/genética , Proteínas Proto-Oncogênicas/antagonistas & inibidores , Proteínas Proto-Oncogênicas/genética , Proteínas Proto-Oncogênicas/metabolismo , RNA Mensageiro/antagonistas & inibidores , RNA Mensageiro/genética , RNA Neoplásico/antagonistas & inibidores , RNA Neoplásico/genética , RatosRESUMO
Pancreatic neuroendocrine tumors (pNETs) are a rare group of cancers accounting for about 1-2% of all pancreatic neoplasms. About 10% of pNETs arise within endocrine tumor syndromes, such as Multiple Endocrine Neoplasia type 1 (MEN1). pNETs affect 30-80% of MEN1 patients, manifesting prevalently as multiple microadenomas. pNETs in patients with MEN1 are particularly difficult to treat due to differences in their growth potential, their multiplicity, the frequent requirement of extensive surgery, the high rate of post-operative recurrences, and the concomitant development of other tumors. MEN1 syndrome is caused by germinal heterozygote inactivating mutation of the MEN1 gene, encoding the menin tumor suppressor protein. MEN1-related pNETs develop following the complete loss of function of wild-type menin. Menin is a key regulator of endocrine cell plasticity and its loss in these cells is sufficient for tumor initiation. Somatic biallelic loss of wild-type menin in the neuroendocrine pancreas presumably alters the epigenetic control of gene expression, mediated by histone modifications and DNA hypermethylation, as a driver of MEN1-associated pNET tumorigenesis. In this light, epigenetic-based therapies aimed to correct the altered DNA methylation, and/or histone modifications might be a possible therapeutic strategy for MEN1 pNETs, for whom standard treatments fail.
Assuntos
Neoplasia Endócrina Múltipla Tipo 1/patologia , Tumores Neuroendócrinos/patologia , Neoplasias Pancreáticas/patologia , Animais , Epigênese Genética , Humanos , Neoplasia Endócrina Múltipla Tipo 1/classificação , Neoplasia Endócrina Múltipla Tipo 1/genética , Neoplasia Endócrina Múltipla Tipo 1/terapia , Tumores Neuroendócrinos/classificação , Tumores Neuroendócrinos/genética , Tumores Neuroendócrinos/terapia , Neoplasias Pancreáticas/classificação , Neoplasias Pancreáticas/genética , Neoplasias Pancreáticas/terapia , Transdução de Sinais/genéticaRESUMO
Bone fragility is a pathological condition caused by altered homeostasis of the mineralized bone mass with deterioration of the microarchitecture of the bone tissue, which results in a reduction of bone strength and an increased risk of fracture, even in the absence of high-impact trauma. The most common cause of bone fragility is primary osteoporosis in the elderly. However, bone fragility can manifest at any age, within the context of a wide spectrum of congenital rare bone metabolic diseases in which the inherited genetic defect alters correct bone modeling and remodeling at different points and aspects of bone synthesis and/or bone resorption, leading to defective bone tissue highly prone to long bone bowing, stress fractures and pseudofractures, and/or fragility fractures. To date, over 100 different Mendelian-inherited metabolic bone disorders have been identified and included in the OMIM database, associated with germinal heterozygote, compound heterozygote, or homozygote mutations, affecting over 80 different genes involved in the regulation of bone and mineral metabolism. This manuscript reviews clinical bone phenotypes, and the associated bone fragility in rare congenital metabolic bone disorders, following a disease taxonomic classification based on deranged bone metabolic activity.
Assuntos
Doenças Ósseas Metabólicas/congênito , Densidade Óssea/genética , Densidade Óssea/fisiologia , Desenvolvimento Ósseo/genética , Desenvolvimento Ósseo/fisiologia , Doenças Ósseas Metabólicas/genética , Doenças Ósseas Metabólicas/fisiopatologia , Remodelação Óssea/genética , Remodelação Óssea/fisiologia , Reabsorção Óssea/genética , Reabsorção Óssea/fisiopatologia , Calcificação Fisiológica/genética , Calcificação Fisiológica/fisiologia , Proteínas da Matriz Extracelular/genética , Proteínas da Matriz Extracelular/fisiologia , Fraturas Ósseas/genética , Fraturas Ósseas/fisiopatologia , Humanos , Redes e Vias Metabólicas/genética , Mutação , Transdução de Sinais/genéticaRESUMO
Parathyroid tumors are rare endocrine neoplasms affecting 0.1-0.3% of the general population, including benign parathyroid adenomas (PAs; about 98% of cases), intermediate atypical parathyroid adenomas (aPAs; 1.2-1.3% of cases) and malignant metastatic parathyroid carcinomas (PCs; less than 1% of cases). These tumors are characterized by a variable spectrum of clinical phenotypes and an elevated cellular, histological and molecular heterogeneity that make it difficult to pre-operatively distinguish PAs, aPAs and PCs. Thorough knowledge of genetic, epigenetic, and molecular signatures, which characterize different parathyroid tumor subtypes and drive different tumorigeneses, is a key step to identify potential diagnostic biomarkers able to distinguish among different parathyroid neoplastic types, as well as provide novel therapeutic targets and strategies for these rare neoplasms, which are still a clinical and therapeutic challenge. Here, we review the current knowledge on gene mutations and epigenetic changes that have been associated with the development of different clinical types of parathyroid tumors, both in familial and sporadic forms of these endocrine neoplasms.
Assuntos
Mutação , Neoplasias das Paratireoides/genética , Neoplasias das Paratireoides/patologia , Adenoma/genética , Inibidor de Quinase Dependente de Ciclina p27/genética , Epigênese Genética , Fibroma/genética , Humanos , Hiperparatireoidismo/genética , Hiperparatireoidismo Primário/genética , Neoplasias Maxilomandibulares/genética , Neoplasia Endócrina Múltipla Tipo 1/genética , Neoplasia Endócrina Múltipla Tipo 2a/genética , Proteínas Proto-Oncogênicas/genética , Proteínas Supressoras de Tumor/genéticaRESUMO
Telangiectatic osteosarcoma (TOS) is an aggressive variant of osteosarcoma (OS) with distinctive radiographic, gross, microscopic features, and prognostic implications. Despite several studies on OS, we are still far from understanding the molecular mechanisms of TOS. In recent years, many studies have demonstrated not only that microRNAs (miRNAs) are involved in OS tumorigenesis, development, and metastasis, but also that the presence in high-grade types of OS of cancer stem cells (CSCs) plays an important role in tumor progression. Despite these findings, nothing has been described previously about the expression of miRNAs and the presence of CSCs in human TOS. Therefore, we have isolated/characterized a putative CSC cell line from human TOS (TOS-CSCs) and evaluated the expression levels of several miRNAs in TOS-CSCs using real-time quantitative assays. We show, for the first time, the existence of CSCs in human TOS, highlighting the in vitro establishment of this unique stabilized cell line and an identification of a preliminary expression of the miRNA profile, characteristic of TOS-CSCs. These findings represent an important step in the study of the biology of one of the most aggressive variants of OS and the role of miRNAs in TOS-CSC behavior.
Assuntos
Neoplasias Ósseas/genética , Perfilação da Expressão Gênica , Regulação Neoplásica da Expressão Gênica , MicroRNAs/genética , Osteossarcoma/genética , Transcriptoma , Biomarcadores , Biópsia , Neoplasias Ósseas/metabolismo , Neoplasias Ósseas/patologia , Linhagem Celular Tumoral , Imunofluorescência , Humanos , Imuno-Histoquímica , Osteossarcoma/metabolismo , Osteossarcoma/patologiaRESUMO
The development of new antiviral drugs against SARS-CoV-2 is a valuable long-term strategy to protect the global population from the COVID-19 pandemic complementary to the vaccination. Considering this, the viral main protease (Mpro) is among the most promising molecular targets in light of its importance during the viral replication cycle. The natural flavonoid quercetin 1 has been recently reported to be a potent Mpro inhibitor in vitro, and we explored the effect produced by the introduction of organoselenium functionalities in this scaffold. In particular, we report here a new synthetic method to prepare previously inaccessible C-8 seleno-quercetin derivatives. By screening a small library of flavonols and flavone derivatives, we observed that some compounds inhibit the protease activity in vitro. For the first time, we demonstrate that quercetin (1) and 8-(p-tolylselenyl)quercetin (2d) block SARS-CoV-2 replication in infected cells at non-toxic concentrations, with an IC50 of 192 µM and 8 µM, respectively. Based on docking experiments driven by experimental evidence, we propose a non-covalent mechanism for Mpro inhibition in which a hydrogen bond between the selenium atom and Gln189 residue in the catalytic pocket could explain the higher Mpro activity of 2d and, as a result, its better antiviral profile.
Assuntos
Antivirais/química , Quercetina/química , SARS-CoV-2/metabolismo , Selênio/química , Proteínas da Matriz Viral/antagonistas & inibidores , Animais , Antivirais/metabolismo , Antivirais/farmacologia , Sítios de Ligação , COVID-19/patologia , COVID-19/virologia , Domínio Catalítico , Chlorocebus aethiops , Humanos , Ligação de Hidrogênio , Simulação de Acoplamento Molecular , Inibidores de Proteases/química , Inibidores de Proteases/metabolismo , Inibidores de Proteases/farmacologia , Quercetina/metabolismo , Quercetina/farmacologia , SARS-CoV-2/isolamento & purificação , Selênio/metabolismo , Células Vero , Proteínas da Matriz Viral/metabolismo , Replicação Viral/efeitos dos fármacosRESUMO
In recent years, vinyl selenones were rediscovered as useful building blocks for new synthetic transformations. This review will highlight these advances in the field of multiple-bond-forming reactions, one-pot synthesis of carbo- and heterocycles, enantioselective construction of densely functionalized molecules, and total synthesis of natural products.
RESUMO
Multiple endocrine neoplasia type 1 (MEN1) is a rare inherited tumor syndrome, characterized by the development of multiple neuroendocrine tumors (NETs) in a single patient. Major manifestations include primary hyperparathyroidism, gastro-entero-pancreatic neuroendocrine tumors, and pituitary adenomas. In addition to these main NETs, various combinations of more than 20 endocrine and non-endocrine tumors have been described in MEN1 patients. Despite advances in diagnostic techniques and treatment options, which are generally similar to those of sporadic tumors, patients with MEN1 have a poor life expectancy, and the need for targeted therapies is strongly felt. MEN1 is caused by germline heterozygous inactivating mutations of the MEN1 gene, which encodes menin, a tumor suppressor protein. The lack of a direct genotype-phenotype correlation does not permit the determination of the exact clinical course of the syndrome. One of the possible causes of this lack of association could be ascribed to epigenetic factors, including microRNAs (miRNAs), single-stranded non-coding small RNAs that negatively regulate post-transcriptional gene expression. Some miRNAs, and their deregulation, have been associated with MEN1 tumorigenesis. Recently, an extracellular class of miRNAs has also been identified (c-miRNAs); variations in their levels showed association with various human diseases, including tumors. The aim of this review is to provide a general overview on the involvement of miRNAs in MEN1 tumor development, to be used as possible targets for novel molecular therapies. The potential role of c-miRNAs as future non-invasive diagnostic and prognostic biomarkers of MEN1 will be discussed as well.