Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 61
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Am J Hematol ; 2024 Apr 26.
Artigo em Inglês | MEDLINE | ID: mdl-38666530

RESUMO

Congenital Dyserythropoietic Anemia type I (CDA I) is a rare hereditary condition characterized by macrocytic/normocytic anemia, splenomegaly, iron overload, and distinct abnormalities during late erythropoiesis, particularly internuclear bridges between erythroblasts. Diagnosis of CDA I remains challenging due to its rarity, clinical heterogeneity, and overlapping phenotype with other rare hereditary anemias. In this case series, we present 36 patients with suspected CDA I. A molecular diagnosis was successfully established in 89% of cases, identifying 16 patients with CDA I through the presence of 18 causative variants in the CDAN1 or CDIN1 genes. Transcriptomic analysis of CDIN1 variants revealed impaired erythroid differentiation and disruptions in transcription, cell proliferation, and histone regulation. Conversely, 16 individuals received a different diagnosis, primarily pyruvate kinase deficiency. Comparisons between CDA I and non-CDA I patients revealed no significant differences in erythroblast morphological features. However, hemoglobin levels and red blood cell count differed between the two groups, with non-CDA I subjects being more severely affected. Notably, most patients with severe anemia belonged to the non-CDA I group (82% non-CDA I vs. 18% CDA I), with a subsequent absolute prevalence of transfusion dependency among non-CDA I patients (100% vs. 41.7%). All patients exhibited reduced bone marrow responsiveness to anemia, with a more pronounced effect observed in non-CDA I patients. Erythropoietin levels were significantly higher in non-CDA I patients compared to CDA I patients. However, evaluations of erythroferrone, soluble transferrin receptor, and hepcidin revealed no significant differences in plasma concentration between the two groups.

3.
Int J Mol Sci ; 23(3)2022 Jan 24.
Artigo em Inglês | MEDLINE | ID: mdl-35163229

RESUMO

Biallelic pathogenic variants in the SEC23B gene cause congenital dyserythropoietic anemia type II (CDA II), a rare hereditary disorder hallmarked by ineffective erythropoiesis, hemolysis, erythroblast morphological abnormalities, and hypo-glycosylation of some red blood cell membrane proteins. Abnormalities in SEC23B, which encodes the homonymous cytoplasmic COPII (coat protein complex II) component, disturb the endoplasmic reticulum to Golgi trafficking and affect different glycosylation pathways. The most harmful complication of CDA II is the severe iron overload. Within our case series (28 CDA II patients), approximately 36% of them exhibit severe iron overload despite mild degree of anemia and slightly increased levels of ERFE (the only erythroid regulator of hepcidin suppression). Thus, we hypothesized a direct role of SEC23B loss-of-function in the pathomechanism of hepatic iron overload. We established a hepatic cell line, HuH7, stably silenced for SEC23B. In silenced cells, we observed significant alterations of the iron status, due to both the alteration in BMP/SMADs pathway effectors and a reduced capability to sense BMP6 stimulus. We demonstrated that the loss-of-function of SEC23B is responsible of the impairment in glycosylation of the membrane proteins involved in the activation of the BMP/SMADs pathway with subsequent hepcidin suppression. Most of these data were confirmed in another hepatic cell line, HepG2, stably silenced for SEC23B. Our findings suggested that the pathogenic mechanism of iron overload in CDA II is associated to both ineffective erythropoiesis and to a specific involvement of SEC23B pathogenic variants at hepatic level. Finally, we demonstrated the ability of SEC23B paralog, i.e., SEC23A, to rescue the hepcidin suppression, highlighting the functional overlap between the two SEC23 paralogs in human hepatic cells.


Assuntos
Hepatócitos/metabolismo , Hepcidinas/genética , Proteínas de Transporte Vesicular/metabolismo , Linhagem Celular , Retículo Endoplasmático/metabolismo , Eritropoese/genética , Glicosilação , Complexo de Golgi/metabolismo , Hepcidinas/metabolismo , Humanos , Sobrecarga de Ferro/genética , Sobrecarga de Ferro/metabolismo , Fígado/patologia , Mutação com Perda de Função/genética , Fenótipo , Proteínas de Transporte Vesicular/genética , Proteínas de Transporte Vesicular/fisiologia
4.
Molecules ; 27(12)2022 Jun 20.
Artigo em Inglês | MEDLINE | ID: mdl-35745082

RESUMO

The contamination of agricultural products with mycotoxins causes risks to animal and human health and severe economic losses. Mycotoxicoses can be reduced by preventing fungal infection using chemical and biological approaches. The chemical strategies can release toxic molecules; therefore, strategies for biological control are being evaluated, such as using nontoxic fungi and their metabolites. This work evaluated the effect of exoenzymes produced by the beneficial fungus Trichoderma afroharzianum strain T22 in degrading Aflatoxin B1 (AFB1) and Ochratoxin A (OTA). The ability of Trichoderma to produce hydrolases was stimulated by using different inducing substrates. The highest AFB1 and OTA degradation activity was obtained using a medium containing lyophilized mushrooms and crude fiber. The T. afroharzianum T22's ability to reduce mycotoxins may be attributed to peroxidase enzymes. This study showed that T.afroharzianum strain T22 or its peroxidase supplementation could represent a sustainable strategy for the degradation of AFB1 and OTA in feed and food products.


Assuntos
Micotoxinas , Ocratoxinas , Trichoderma , Aflatoxina B1 , Animais , Contaminação de Alimentos/análise , Micotoxinas/análise , Ocratoxinas/análise , Peroxidases , Trichoderma/metabolismo
5.
Am J Hematol ; 95(2): 188-197, 2020 02.
Artigo em Inglês | MEDLINE | ID: mdl-31737919

RESUMO

Dehydrated hereditary stomatocytosis (DHS), or xerocytosis, is an autosomal dominant hemolytic anemia. Most patients with DHS carry mutations in the PIEZO1 gene encoding a mechanosensitive cation channel. We here demonstrate that patients with DHS have low levels of hepcidin and only a slight increase of ERFE, the erythroid negative regulator of hepcidin. We demonstrated that at the physiological level, PIEZO1 activation induced Ca2+ influx and suppression of HAMP expression in primary hepatocytes. In two hepatic cellular models expressing PIEZO1 WT and two PIEZO1 gain-of-function mutants (R2456H and R2488Q), we highlight altered expression of a few genes/proteins involved in iron metabolism. Mutant cells showed increased intracellular Ca2+ compared to WT, which was correlated to increased phosphorylation of ERK1/2, inhibition of the BMP-SMADs pathway, and suppression of HAMP transcription. Moreover, the HuH7 cells, treated with PD0325901, a potent inhibitor of ERK1/2 phosphorylation, reduced the phosphorylation of ERK1/2 with the consequent increased phosphorylation of SMAD1/5/8, confirming the link between the two pathways. Another "proof of concept" for the mechanism that links PIEZO1 to HAMP regulation was obtained by mimicking PIEZO1 activation by cell Ca2+ overload, by the Ca2+ ionophore A23187. There was strong down-regulation of HAMP gene expression after this Ca2+ overload. Finally, the inhibition of PIEZO1 by GsMTx4 leads to phenotype rescue. This is the first demonstration of a direct link between PIEZO1 and iron metabolism, which defines the channel as a new hepatic iron metabolism regulator and as a possible therapeutic target of iron overload in DHS and other iron-loading anemias.


Assuntos
Anemia Hemolítica Congênita , Proteínas Morfogenéticas Ósseas/metabolismo , Mutação com Ganho de Função , Hepcidinas/biossíntese , Hidropisia Fetal , Canais Iônicos , Ferro/metabolismo , Fígado/metabolismo , Sistema de Sinalização das MAP Quinases , Proteínas Smad/metabolismo , Substituição de Aminoácidos , Anemia Hemolítica Congênita/genética , Anemia Hemolítica Congênita/metabolismo , Anemia Hemolítica Congênita/patologia , Benzamidas/farmacologia , Proteínas Morfogenéticas Ósseas/genética , Difenilamina/análogos & derivados , Difenilamina/farmacologia , Regulação da Expressão Gênica , Células Hep G2 , Hepcidinas/genética , Humanos , Hidropisia Fetal/genética , Hidropisia Fetal/metabolismo , Hidropisia Fetal/patologia , Canais Iônicos/genética , Canais Iônicos/metabolismo , Fígado/patologia , Proteína Quinase 1 Ativada por Mitógeno/genética , Proteína Quinase 1 Ativada por Mitógeno/metabolismo , Proteína Quinase 3 Ativada por Mitógeno/genética , Proteína Quinase 3 Ativada por Mitógeno/metabolismo , Proteínas Smad/genética
6.
Bioorg Med Chem Lett ; 30(2): 126881, 2020 01 15.
Artigo em Inglês | MEDLINE | ID: mdl-31843348

RESUMO

This work reports the synthesis of quinolone-N-acylhydrazone hybrids, namely 6-R-N'-(2-hydxoxybenzylidene)-4-oxo-1,4-dihydroquinoline-3-carbohydrazide (R = H: 5a, F: 5b, Cl: 5c and Br: 5d), which exhibited excellent activity against arbovirus Zika (ZIKV) and Chikungunya (CHIKV). In vitro screening towards ZIKV and CHIKV inhibition revealed that all substances have significant antiviral activity, most of them being more potent than standard Ribavirin (5a-d: EC50 = 0.75-0.81 µM, Ribavirin: EC50 = 3.95 µM for ZIKV and 5a-d: 1.16-2.85 µM, Ribavirin: EC50 = 2.42 µM for CHIKV). The quinolone-N-acylhydrazone hybrids were non-toxic against Vero cells, in which compounds 5c and 5d showed the best selectivities (SI = 1410 and 630 against ZIKV and CHIKV, respectively). Antiviral activity was identified by inhibition of viral RNA production in a dose-dependent manner. In the evaluation of the time of addition of the compounds, we observed that 5b and 5c remain with strong effect even in the addition for 12 h after infection. The above results indicate that quinolone-N-acylhydrazones represent a new and promising class to be further investigated as anti-ZIKV and anti-CHIKV agents.


Assuntos
Vírus Chikungunya/efeitos dos fármacos , Quinolonas/uso terapêutico , Zika virus/efeitos dos fármacos , Animais , Chlorocebus aethiops , Humanos , Quinolonas/farmacologia
7.
Gastric Cancer ; 23(1): 52-63, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-31250150

RESUMO

BACKGROUND: Type I gastric neuroendocrine tumors (gNETs) arise from hypergastrinemia in patients with autoimmune chronic atrophic gastritis. According to the classical model, the gastric H+/K+ ATPase was the causative autoantigen recognized by CD4+ T cells in chronic autoimmune scenario that secretes IL-17 and correlates with parietal cell (PC) atrophy, which drives to gastric achlorhydria and increases the risk for gastric neoplasms. However, the mechanism by which the inflammatory response correlates with PC atrophy is not clearly defined. METHODS: Recently, we found that the ATP4Ap.R703C mutation impaired PC function and gastric acidification, which drove familial gNET. Our group constructed a knock-in mouse model for the ATP4A mutation, which has served us to better understand the relation between impaired capability to export protons across the plasma membrane of PCs and tumor progression. RESULTS: The ATP4Ap.R703C mutation drives gastric achlorhydria, but also deregulates the acid-base balance within PCs, affecting mitochondrial biogenesis. Mitochondrial malfunction activates ROS signaling, which triggers caspase-3-mediated apoptosis of parietal cells. In addition, when gastric euchlorhydria was restored, mitochondrial function is recovered. Infection by H. pylori promotes destabilization of the mitochondria of the PCs by a mechanism similar to that described for APT4Ap.R703C carriers. CONCLUSIONS: A genetic origin that drives mitochondria alteration would initiate the gastric chronic inflammation instead of the classical IL-17 secretion-mediated mechanism explanation. Gastric euchlorhydria restoration is suggested to be indicated for mitochondrial recover. Our results open a new window to understand gastric neoplasms formation but also the inflammatory mechanisms and autoimmune disorders conducted by genetic origin that composes a premalignant scenario.


Assuntos
Equilíbrio Ácido-Base/genética , ATPase Trocadora de Hidrogênio-Potássio/genética , Tumores Neuroendócrinos/imunologia , Neoplasias Gástricas/imunologia , Acloridria/genética , Animais , Apoptose/fisiologia , Autoimunidade/genética , Técnicas de Introdução de Genes , Infecções por Helicobacter/patologia , Humanos , Camundongos Mutantes , Mitocôndrias/patologia , Tumores Neuroendócrinos/genética , Tumores Neuroendócrinos/patologia , Estresse Oxidativo , Células Parietais Gástricas/imunologia , Células Parietais Gástricas/patologia , Espécies Reativas de Oxigênio/metabolismo , Neoplasias Gástricas/genética , Neoplasias Gástricas/patologia
8.
Mar Drugs ; 18(3)2020 Mar 18.
Artigo em Inglês | MEDLINE | ID: mdl-32197552

RESUMO

Algae have multiple similarities with fungi, with both belonging to the Thallophyte, a polyphyletic group of non-mobile organisms grouped together on the basis of similar characteristics, but not sharing a common ancestor. The main difference between algae and fungi is noted in their metabolism. In fact, although algae have chlorophyll-bearing thalloids and are autotrophic organisms, fungi lack chlorophyll and are heterotrophic, not able to synthesize their own nutrients. However, our studies have shown that the extremophilic microalga Galderia sulphuraria (GS) can also grow very well in heterotrophic conditions like fungi. This study was carried out using several approaches such as scanning electron microscope (SEM), gas chromatography/mass spectrometry (GC/MS), and infrared spectrophotometry (ATR-FTIR). Results showed that the GS, strain ACUF 064, cultured in autotrophic (AGS) and heterotrophic (HGS) conditions, produced different biomolecules. In particular, when grown in HGS, the algae (i) was 30% larger, with an increase in carbon mass that was 20% greater than AGS; (ii) produced higher quantities of stearic acid, oleic acid, monounsaturated fatty acids (MUFAs), and ergosterol; (iii) produced lower quantities of fatty acid methyl esters (FAMEs) such as methyl palmytate, and methyl linoleate, saturated fatty acids (SFAs), and poyliunsaturated fatty acids (PUFAs). ATR-FTIR and principal component analysis (PCA) statistical analysis confirmed that the macromolecular content of HGS was significantly different from AGS. The ability to produce different macromolecules by changing the trophic conditions may represent an interesting strategy to induce microalgae to produce different biomolecules that can find applications in several fields such as food, feed, nutraceutical, or energy production.


Assuntos
Ácidos Graxos/metabolismo , Rodófitas/crescimento & desenvolvimento , Humanos , Espectrometria de Massas , Rodófitas/metabolismo
9.
Int J Mol Sci ; 21(15)2020 Aug 04.
Artigo em Inglês | MEDLINE | ID: mdl-32759740

RESUMO

Congenital dyserythropoietic anemia type II (CDA II) is a hypo-productive anemia defined by ineffective erythropoiesis through maturation arrest of erythroid precursors. CDA II is an autosomal recessive disorder due to loss-of-function mutations in SEC23B. Currently, management of patients with CDA II is based on transfusions, splenectomy, or hematopoietic stem-cell transplantation. Several studies have highlighted benefits of ACE-011 (sotatercept) treatment of ineffective erythropoiesis, which acts as a ligand trap against growth differentiation factor (GDF)11. Herein, we show that GDF11 levels are increased in CDA II, which suggests sotatercept as a targeted therapy for treatment of these patients. Treatment of stable clones of SEC23B-silenced erythroleukemia K562 cells with the iron-containing porphyrin hemin plus GDF11 increased expression of pSMAD2 and reduced nuclear localization of the transcription factor GATA1, with subsequent reduced gene expression of erythroid differentiation markers. We demonstrate that treatment of these SEC23B-silenced K562 cells with RAP-011, a "murinized" ortholog of sotatercept, rescues the disease phenotype by restoring gene expression of erythroid markers through inhibition of the phosphorylated SMAD2 pathway. Our data also demonstrate the effect of RAP-011 treatment in reducing the expression of erythroferrone in vitro, thus suggesting a possible beneficial role of the use of sotatercept in the management of iron overload in patients with CDA II.


Assuntos
Anemia Diseritropoética Congênita/tratamento farmacológico , Proteínas Morfogenéticas Ósseas/genética , Fator de Transcrição GATA1/genética , Fatores de Diferenciação de Crescimento/genética , Proteínas Recombinantes de Fusão/farmacologia , Proteínas de Transporte Vesicular/genética , Anemia Diseritropoética Congênita/genética , Anemia Diseritropoética Congênita/patologia , Células Precursoras Eritroides/metabolismo , Eritropoese/genética , Feminino , Humanos , Células K562 , Mutação/genética , Fenótipo , Proteínas Recombinantes de Fusão/genética , Proteína Smad2/genética , Proteína Smad3/genética
10.
Am J Hematol ; 94(11): 1227-1235, 2019 11.
Artigo em Inglês | MEDLINE | ID: mdl-31400017

RESUMO

The erythroferrone (ERFE) is the erythroid regulator of hepatic iron metabolism by suppressing the expression of hepcidin. Congenital dyserythropoietic anemia type II (CDAII) is an inherited hyporegenerative anemia due to biallelic mutations in the SEC23B gene. Patients with CDAII exhibit marked clinical variability, even among individuals sharing the same pathogenic variants. The ERFE expression in CDAII is increased and related to abnormal erythropoiesis. We identified a recurrent low-frequency variant, A260S, in the ERFE gene in 12.5% of CDAII patients with a severe phenotype. We demonstrated that the ERFE-A260S variant leads to increased levels of ERFE, with subsequently marked impairment of iron regulation pathways at the hepatic level. Functional characterization of ERFE-A260S in the hepatic cell system demonstrated its modifier role in iron overload by impairing the BMP/SMAD pathway. We herein described for the first time an ERFE polymorphism as a genetic modifier variant. This was with a mild effect on disease expression, under a multifactorial-like model, in a condition of iron-loading anemia due to ineffective erythropoiesis.


Assuntos
Anemia Diseritropoética Congênita/genética , Proteínas Morfogenéticas Ósseas/fisiologia , Sobrecarga de Ferro/etiologia , Fígado/metabolismo , Hormônios Peptídicos/genética , Transdução de Sinais/genética , Proteínas Smad/fisiologia , Adolescente , Adulto , Anemia Diseritropoética Congênita/complicações , Anemia Diseritropoética Congênita/metabolismo , Transfusão de Sangue , Proteína Morfogenética Óssea 6/farmacologia , Linhagem Celular , Criança , Eritropoese/genética , Feminino , Estudos de Associação Genética , Hepcidinas/biossíntese , Hepcidinas/sangue , Hepcidinas/genética , Humanos , Masculino , Hormônios Peptídicos/sangue , Hormônios Peptídicos/farmacologia , Hormônios Peptídicos/fisiologia , Proteínas Recombinantes/farmacologia , Índice de Gravidade de Doença , Proteínas Smad/biossíntese , Proteínas Smad/genética , Adulto Jovem
11.
Int J Mol Sci ; 20(3)2019 Jan 28.
Artigo em Inglês | MEDLINE | ID: mdl-30696057

RESUMO

The common bean (Phaseolus vulgaris L.) is one of the most important food legume crops worldwide that is affected by phytopathogenic fungi such as Rhizoctonia solani. Biological control represents an effective alternative method for the use of conventional synthetic chemical pesticides for crop protection. Trichoderma spp. have been successfully used in agriculture both to control fungal diseases and to promote plant growth. The response of the plant to the invasion of fungi activates defensive resistance responses by inducing the expression of genes and producing secondary metabolites. The purpose of this work was to analyze the changes in the bean metabolome that occur during its interaction with pathogenic (R. solani) and antagonistic (T. velutinum) fungi. In this work, 216 compounds were characterized by liquid chromatography mass spectrometry (LC-MS) analysis but only 36 were noted as significantly different in the interaction in comparison to control plants and they were tentatively characterized. These compounds were classified as: two amino acids, three peptides, one carbohydrate, one glycoside, one fatty acid, two lipids, 17 flavonoids, four phenols and four terpenes. This work is the first attempt to determine how the presence of T. velutinum and/or R. solani affect the defense response of bean plants using untargeted metabolomics analysis.


Assuntos
Metaboloma , Phaseolus/microbiologia , Rhizoctonia/fisiologia , Trichoderma/fisiologia , Compostos Fitoquímicos/análise , Folhas de Planta/metabolismo , Folhas de Planta/microbiologia , Análise de Componente Principal
12.
Molecules ; 24(4)2019 Feb 19.
Artigo em Inglês | MEDLINE | ID: mdl-30791467

RESUMO

Metabolites from a collection of selected fungal isolates have been screened for insecticidal activity against the aphid Acyrthosiphon pisum. Crude organic extracts of culture filtrates from six fungal isolates (Paecilomyces lilacinus, Pochonia chlamydosporia, Penicillium griseofulvum, Beauveria bassiana, Metarhizium anisopliae and Talaromyces pinophilus) caused mortality of aphids within 72 h after treatment. In this work, bioassay-guided fractionation has been used to characterize the main bioactive metabolites accumulated in fungal extracts. Leucinostatins A, B and D represent the bioactive compounds produced by P. lilacinus. From P. griseofulvum and B. bassiana extracts, griseofulvin and beauvericin have been isolated, respectively; 3-O-Methylfunicone and a mixture of destruxins have been found in the active fractions of T. pinophilum and M. anisopliae, respectively. A novel azaphilone compound, we named chlamyphilone, with significant insecticidal activity, has been isolated from the culture filtrate of P. chlamydosporia. Its structure has been determined using extensive spectroscopic methods and chemical derivatization.


Assuntos
Ascomicetos/metabolismo , Inseticidas/farmacologia , Produtos Biológicos/química , Produtos Biológicos/farmacologia , Inseticidas/química , Espectroscopia de Ressonância Magnética , Estrutura Molecular
13.
Mol Plant Microbe Interact ; 31(10): 982-994, 2018 10.
Artigo em Inglês | MEDLINE | ID: mdl-29547355

RESUMO

Plant roots release complex mixtures of bioactive molecules, including compounds that affect the activity and modify the composition of the rhizosphere microbiome. In this work, we investigated the initial phase of the interaction between tomato and an effective biocontrol strain of Trichoderma harzianum (T22). We found that root exudates (RE), obtained from plants grown in a split-root system and exposed to various biotic and abiotic stress factors (wounding, salt, pathogen attack), were able to stimulate the growth and act as chemoattractants of the biocontrol fungus. On the other hand, some of the treatments did not result in an enhanced chemotropism on Fusarium oxysporum f. sp. lycopersici, indicating a mechanism that may be selective for nonpathogenic microbes. The involvement of peroxidases and oxylipins, both known to be released by roots in response to stress, was demonstrated by using RE fractions containing these molecules or their commercial purified analogs, testing the effect of an inhibitor, and characterizing the complex pattern of these metabolites released by tomato roots both locally and systemically.


Assuntos
Fusarium/efeitos dos fármacos , Exsudatos de Plantas/farmacologia , Raízes de Plantas/metabolismo , Solanum lycopersicum/metabolismo , Trichoderma/efeitos dos fármacos , Quimiotaxia , Fusarium/fisiologia , Solanum lycopersicum/microbiologia , Doenças das Plantas/microbiologia , Raízes de Plantas/microbiologia , Microbiologia do Solo , Esporos Fúngicos , Estresse Fisiológico , Trichoderma/fisiologia
16.
Am J Hematol ; 93(5): 672-682, 2018 05.
Artigo em Inglês | MEDLINE | ID: mdl-29396846

RESUMO

Mutations in more than 70 genes cause hereditary anemias (HA), a highly heterogeneous group of rare/low frequency disorders in which we included: hyporegenerative anemias, as congenital dyserythropoietic anemia (CDA) and Diamond-Blackfan anemia; hemolytic anemias due to erythrocyte membrane defects, as hereditary spherocytosis and stomatocytosis; hemolytic anemias due to enzymatic defects. The study describes the diagnostic workflow for HA, based on the development of two consecutive versions of a targeted-NGS panel, including 34 and 71 genes, respectively. Seventy-four probands from 62 unrelated families were investigated. Our study includes the most comprehensive gene set for these anemias and the largest cohort of patients described so far. We obtained an overall diagnostic yield of 64.9%. Despite 54.2% of cases showed conclusive diagnosis fitting well to the clinical suspicion, the multi-gene analysis modified the original clinical diagnosis in 45.8% of patients (nonmatched phenotype-genotype). Of note, 81.8% of nonmatched patients were clinically suspected to suffer from CDA. Particularly, 45.5% of the probands originally classified as CDA exhibited a conclusive diagnosis of chronic anemia due to enzymatic defects, mainly due to mutations in PKLR gene. Interestingly, we also identified a syndromic CDA patient with mild anemia and epilepsy, showing a homozygous mutation in CAD gene, recently associated to early infantile epileptic encephalopathy-50 and CDA-like anemia. Finally, we described a patient showing marked iron overload due to the coinheritance of PIEZO1 and SEC23B mutations, demonstrating that the multi-gene approach is valuable not only for achieving a correct and definitive diagnosis, but also for guiding treatment.


Assuntos
Anemia Hemolítica Congênita/diagnóstico , Testes Genéticos/métodos , Adolescente , Adulto , Anemia Diseritropoética Congênita/genética , Anemia Hemolítica Congênita/genética , Anemia Hemolítica Congênita/terapia , Criança , Pré-Escolar , Erros de Diagnóstico , Gerenciamento Clínico , Feminino , Estudos de Associação Genética , Variação Genética , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , Lactente , Masculino , Adulto Jovem
17.
J Org Chem ; 81(13): 5525-37, 2016 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-27281677

RESUMO

Starting from 2-hydroxy-1,4-naphthoquinone (lawsone), we synthesized eight new 6H-dibenzo[b,h]xanthene derivatives selectively under solvent-free conditions. Spectroscopic investigations confirmed that only the isomer 6H-dibenzo[b,h]xanthene was obtained in all eight cases. Computational studies provide a rationalization for the selective appearance of these isomers having as an intermediate an addition product.

18.
Mol Plant Microbe Interact ; 28(2): 167-79, 2015 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-25317667

RESUMO

Fungi belonging to the genus Trichoderma are among the most active and ecologically successful microbes found in natural environments, because they are able to use a variety of substrates and affect the growth of other microbes and virtually any plant species. We isolated and characterized a novel type II hydrophobin secreted by the biocontrol strain MK1 of Trichoderma longibrachiatum. The corresponding gene (Hytlo1) has a multiple role in the Trichoderma-plant-pathogen three-way interaction, while the purified protein displayed a direct antifungal as well as a microbe-associated molecular pattern and a plant growth promotion (PGP) activity. Leaf infiltration with the hydrophobin systemically increased resistance to pathogens and activated defense-related responses involving reactive oxygen species, superoxide dismutase, oxylipin, phytoalexin, and pathogenesis-related protein formation or activity. The hydrophobin was found to enhance development of a variety of plants when applied at very low doses. It particularly stimulated root formation and growth, as demonstrated also by transient expression of the encoding gene in tobacco and tomato. Targeted knock-out of Hytlo1 significantly reduced both antagonistic and PGP effect of the wild-type strain. We conclude that this protein represents a clear example of a molecular factor developed by Trichoderma spp. to establish a mutually beneficial interaction with the colonized plant.


Assuntos
Proteínas Fúngicas/metabolismo , Regulação Fúngica da Expressão Gênica/fisiologia , Doenças das Plantas/microbiologia , Plantas/microbiologia , Trichoderma/metabolismo , Clonagem Molecular , Proteínas Fúngicas/genética , Regulação da Expressão Gênica de Plantas/fisiologia , Controle Biológico de Vetores , Plantas/genética , Plantas/metabolismo
20.
Molecules ; 19(7): 9760-72, 2014 Jul 08.
Artigo em Inglês | MEDLINE | ID: mdl-25006784

RESUMO

Trichoderma are ubiquitous soil fungi that include species widely used as biocontrol agents in agriculture. Many isolates are known to secrete several secondary metabolites with different biological activities towards plants and other microbes. Harzianic acid (HA) is a T. harzianum metabolite able to promote plant growth and strongly bind iron. In this work, we isolated from the culture filtrate of a T. harzianum strain a new metabolite, named isoharzianic acid (iso-HA), a stereoisomer of HA. The structure and absolute configuration of this compound has been determined by spectroscopic methods, including UV-Vis, MS, 1D and 2D NMR analyses. In vitro applications of iso-HA inhibited the mycelium radial growth of Sclerotinia sclerotiorum and Rhizoctonia solani. Moreover, iso HA improved the germination of tomato seeds and induced disease resistance. HPLC-DAD experiments showed that the production of HA and iso HA was affected by the presence of plant tissue in the liquid medium. In particular, tomato tissue elicited the production of HA but negatively modulated the biosynthesis of its analogue iso-HA, suggesting that different forms of the same Trichoderma secondary metabolite have specific roles in the molecular mechanism regulating the Trichoderma plant interaction.


Assuntos
Agricultura , Fungos/metabolismo , Metabolômica , Antibacterianos/química , Antibacterianos/metabolismo , Antibacterianos/farmacologia , Fungos/química , Germinação/efeitos dos fármacos , Hidroxibutiratos/química , Hidroxibutiratos/metabolismo , Solanum lycopersicum/crescimento & desenvolvimento , Controle Biológico de Vetores , Reguladores de Crescimento de Plantas/química , Reguladores de Crescimento de Plantas/metabolismo , Reguladores de Crescimento de Plantas/farmacologia , Pirróis/química , Pirróis/metabolismo , Metabolismo Secundário , Microbiologia do Solo , Trichoderma/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA