Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Plant Physiol ; 184(3): 1236-1250, 2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-32873629

RESUMO

In plants, iron uptake from the soil is tightly regulated to ensure optimal growth and development. Iron absorption in Arabidopsis root epidermal cells requires the IRT1 transporter that also allows the entry of certain non-iron metals, such as Zn, Mn, and Co. Recent work demonstrated that IRT1 endocytosis and degradation are controlled by IRT1 non-iron metal substrates in a ubiquitin-dependent manner. To better understand how metal uptake is regulated, we identified IRT1-interacting proteins in Arabidopsis roots by mass spectrometry and established an interactome of IRT1. Interestingly, the AHA2 proton pump and the FRO2 reductase, both of which work in concert with IRT1 in the acidification-reduction-transport strategy of iron uptake, were part of this interactome. We confirmed that IRT1, FRO2, and AHA2 associate through co-immunopurification and split-ubiquitin analyses, and uncovered that they form tripartite direct interactions. We characterized the dynamics of the iron uptake complex and showed that FRO2 and AHA2 ubiquitination is independent of the non-iron metal substrates transported by IRT1. In addition, FRO2 and AHA2 are not largely endocytosed in response to non-iron metal excess, unlike IRT1. Indeed, we provide evidence that the phosphorylation of IRT1 in response to high levels of non-iron metals likely triggers dissociation of the complex. Overall, we propose that a dedicated iron-acquisition protein complex exists at the cell surface of Arabidopsis root epidermal cells to optimize iron uptake.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/crescimento & desenvolvimento , Arabidopsis/genética , Transporte Biológico/fisiologia , Células Epidérmicas/metabolismo , Ferro/metabolismo , Raízes de Plantas/metabolismo , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Transporte Biológico/genética , Variação Genética , Genótipo , Raízes de Plantas/genética
2.
New Phytol ; 201(1): 116-130, 2014 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-24033367

RESUMO

Understanding the cellular mechanisms of plant tolerance to mercury (Hg) is important for developing phytoremediation strategies of Hg-contaminated soils. The early responses of alfalfa (Medicago sativa) seedlings to Hg were studied using transcriptomics analysis. A Medicago truncatula microarray was hybridized with high-quality root RNA from M. sativa treated with 3 µM Hg for 3, 6 and 24 h. The transcriptional pattern data were complementary to the measurements of root growth inhibition, lipid peroxidation, hydrogen peroxide (H2 O2 ) accumulation and NADPH-oxidase activity as stress indexes. Of 559 differentially expressed genes (DEGs), 91% were up-regulated. The majority of DEGs were shared between the 3 and 6 h (60%) time points, including the 'stress', 'secondary metabolism' and 'hormone metabolism' functional categories. Genes from ethylene metabolism and signalling were highly represented, suggesting that this phytohormone may be relevant for metal perception and homeostasis. Ethylene-insensitive alfalfa seedlings preincubated with the ethylene signalling inhibitor 1-methylcyclopronene and Arabidopsis thaliana ein2-5 mutants confirmed that ethylene participates in the early perception of Hg stress. It modulates root growth inhibition, NADPH-oxidase activity and Hg-induced apoplastic H2 O2 accumulation. Therefore, ethylene signalling attenuation could be useful in future phytotechnological applications to ameliorate stress symptoms in Hg-polluted plants.


Assuntos
Adaptação Fisiológica/genética , Etilenos/metabolismo , Expressão Gênica , Genes de Plantas , Medicago/genética , Mercúrio/farmacologia , Estresse Fisiológico/genética , Peróxido de Hidrogênio/metabolismo , Peroxidação de Lipídeos , Medicago/metabolismo , Medicago sativa/genética , Medicago sativa/metabolismo , Medicago truncatula/genética , Medicago truncatula/metabolismo , Mercúrio/metabolismo , NADPH Oxidases/metabolismo , Estresse Oxidativo , Reguladores de Crescimento de Plantas/metabolismo , Raízes de Plantas/crescimento & desenvolvimento , Raízes de Plantas/metabolismo , RNA de Plantas , Plântula , Transdução de Sinais , Transcriptoma , Regulação para Cima
3.
Plant Signal Behav ; 16(11): 1975088, 2021 11 02.
Artigo em Inglês | MEDLINE | ID: mdl-34514930

RESUMO

Iron (Fe) is involved in multiple processes that contribute to the maintenance of the cellular homeostasis of all living beings. In photosynthetic organisms, Fe is notably required for photosynthesis. Although iron is generally abundant in the environment, it is frequently poorly bioavailable. This review focuses on the molecular strategies that photosynthetic organisms have evolved to optimize iron acquisition, using Arabidopsis thaliana, rice (Oryza sativa), and some unicellular algae as models. Non-graminaceous plants, including Arabidopsis, take up iron from the soil by an acidification-reduction-transport process (strategy I) requiring specific proteins that were recently shown to associate in a dedicated complex. On the other hand, graminaceous plants, such as rice, use the so-called strategy II to acquire iron, which relies on the uptake of Fe3+ chelated by phytosiderophores that are secreted by the plant into the rhizosphere. However, apart these main strategies, accessory mechanisms contribute to robust iron uptake in both Arabidopsis and rice. Unicellular algae combine reductive and non-reductive mechanisms for iron uptake and present important specificities compared to land plants. Since the majority of the molecular actors required for iron acquisition in algae are not conserved in land plants, questions arise about the evolution of the Fe uptake processes upon land colonization.


Assuntos
Arabidopsis/metabolismo , Cianobactérias/metabolismo , Ferro/metabolismo , Redes e Vias Metabólicas , Oryza/metabolismo , Transporte Biológico , Regulação da Expressão Gênica de Plantas , Fotossíntese
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA