Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 99
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Plant J ; 113(4): 802-818, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36575919

RESUMO

Hybridizations between Musa species and subspecies, enabled by their transport via human migration, were proposed to have played an important role in banana domestication. We exploited sequencing data of 226 Musaceae accessions, including wild and cultivated accessions, to characterize the inter(sub)specific hybridization pattern that gave rise to cultivated bananas. We identified 11 genetic pools that contributed to cultivars, including two contributors of unknown origin. Informative alleles for each of these genetic pools were pinpointed and used to obtain genome ancestry mosaics of accessions. Diploid and triploid cultivars had genome mosaics involving three up to possibly seven contributors. The simplest mosaics were found for some diploid cultivars from New Guinea, combining three contributors, i.e., banksii and zebrina representing Musa acuminata subspecies and, more unexpectedly, the New Guinean species Musa schizocarpa. Breakpoints of M. schizocarpa introgressions were found to be conserved between New Guinea cultivars and the other analyzed diploid and triploid cultivars. This suggests that plants bearing these M. schizocarpa introgressions were transported from New Guinea and gave rise to currently cultivated bananas. Many cultivars showed contrasted mosaics with predominant ancestry from their geographical origin across Southeast Asia to New Guinea. This revealed that further diversification occurred in different Southeast Asian regions through hybridization with other Musa (sub)species, including two unknown ancestors that we propose to be M. acuminata ssp. halabanensis and a yet to be characterized M. acuminata subspecies. These results highlighted a dynamic crop formation process that was initiated in New Guinea, with subsequent diversification throughout Southeast Asia.


Assuntos
Genoma de Planta , Musa , Humanos , Genoma de Planta/genética , Musa/genética , Nova Guiné , Triploidia , Hibridização Genética
2.
Plant Dis ; : PDIS04230741RE, 2024 Jun 27.
Artigo em Inglês | MEDLINE | ID: mdl-38243182

RESUMO

Black sigatoka disease (BSD) is the most important foliar threat in banana production, and breeding efforts against it should take advantage of genomic selection (GS), which has become one of the most explored tools to increase genetic gain, save time, and reduce selection costs. To evaluate the potential of GS in banana for BSD, 210 triploid accessions were obtained from the African Banana and Plantain Research Center to constitute a training population. The variability in the population was assessed at the phenotypic level using BSD- and agronomic-related traits and at the molecular level using single-nucleotide polymorphisms (SNPs). The analysis of variance showed a significant difference between accessions for almost all traits measured, although at the genomic group level, there was no significant difference for BSD-related traits. The index of non-spotted leaves among accessions ranged from 0.11 to 0.8. The accessions screening in controlled conditions confirmed the susceptibility of all genomic groups to BSD. The principal components analysis with phenotypic data revealed no clear diversity partition of the population. However, the structure analysis and the hierarchical clustering analysis with SNPs grouped the population into four clusters and two subpopulations, respectively. The field and laboratory screening of the banana GS training population confirmed that all genomic groups are susceptible to BSD but did not reveal any genetic structure, whereas SNP markers exhibited clear genetic structure and provided useful information in the perspective of applying GS.

3.
Ann Bot ; 131(7): 1149-1161, 2023 08 25.
Artigo em Inglês | MEDLINE | ID: mdl-37267450

RESUMO

BACKGROUND AND AIMS: Cultivated bananas resulted from inter(sub)specific hybridizations involving Musa species and subspecies (M. acuminata subspecies, M. schizocarpa, M. balbisiana) and the subsequent selection, centuries ago, of hybrids with parthenocarpic, seedless fruits. Cultivars have low fertility and are vegetatively propagated, forming groups of somaclones. Relatively few of them, mainly triploids, are grown on a large scale and characterization of their parental relationships may be useful for breeding strategies. Here we investigate parental relationships and gamete-type contributions among diploid and polyploid banana cultivars. METHODS: We used SNP genotyping data from whole-genome sequencing of 178 banana individuals, including 111 cultivars, 55 wild bananas and 12 synthetic F1 hybrids. We analysed the proportion of SNP sites in accordance with direct parentage with a global statistic and along chromosomes for selected individuals. KEY RESULTS: We characterized parentage relationships for 7 diploid cultivars, 11 triploid cultivars and 1 tetraploid cultivar. Results showed that both diploid and triploid cultivars could have contributed gametes to other banana cultivars. Diploids may have contributed 1x or 2x gametes and triploids 1x to 3x gametes. The Mchare diploid cultivar group, nowadays only found in East Africa, was found as parent of two diploid and eight triploid cultivars. In five of its identified triploid offspring, corresponding to main export or locally popular dessert bananas, Mchare contributed a 2x gamete with full genome restitution without recombination. Analyses of remaining haplotypes in these Mchare offspring suggested ancestral pedigree relationships between different interspecific banana cultivars. CONCLUSIONS: The current cultivated banana resulted from different pathways of formation, with implication of recombined or un-recombined unreduced gametes produced by diploid or triploid cultivars. Identification of dessert banana's parents and the types of gametes they contributed should support the design of breeding strategies.


Assuntos
Musa , Triploidia , Musa/genética , Diploide , Hibridização Genética , Células Germinativas
4.
Crit Care ; 27(1): 170, 2023 05 04.
Artigo em Inglês | MEDLINE | ID: mdl-37143091

RESUMO

PURPOSE: To evaluate the heterogeneity in the definition of delirium in randomized controlled trials (RCTs) included in meta-analyses of delirium in intensive care units (ICUs) and to explore whether intervention effect depends on the definition used. METHODS: We searched PubMed for meta-analyses including RCTs evaluating prevention or treatment strategies of delirium in ICU. The definition of delirium was collected from RCTs and classified as validated (DSM criteria, CAM-ICU, ICDSC, NEECHAM, DRS-R98) or non-validated (non-validated scales, set of symptoms, physician appreciation or not reported). We conducted a meta-epidemiological analysis to compare intervention effects between trials using or not a validated definition by a two-step method as primary analysis and a multilevel model as secondary analysis. A ratio of odds ratios (ROR) < 1 indicated larger intervention effects in trials using a non-validated definition. RESULTS: Of 149 RCTs (41 meta-analyses), 109 (73.1%) used a validated definition and 40 (26.8%) did not (including 31 [20.8%] not reporting the definition). The primary analysis of 7 meta-analyses (30 RCTs) found no significant difference in intervention effects between trials using a validated definition and the others (ROR = 0.54, 95% CI 0.27-1.08), whereas the secondary multilevel analysis including 12 meta-analyses (67 RCTs) found significantly larger effects for trials using a non-validated versus a validated definition (ROR = 0.36, 95% CI 0.21-0.62). CONCLUSION: The definition of delirium was heterogeneous across RCTs, with one-fifth not reporting how they evaluated delirium. We did not find a significant association with intervention effect in the primary analysis. The secondary analysis including more studies revealed significantly larger intervention effects in trials using a non-validated versus a validated definition.


Assuntos
Delírio , Unidades de Terapia Intensiva , Humanos , Delírio/diagnóstico , Delírio/epidemiologia , Delírio/terapia , Estudos Epidemiológicos , Ensaios Clínicos Controlados Aleatórios como Assunto , Metanálise como Assunto
5.
Crit Care ; 27(1): 354, 2023 09 12.
Artigo em Inglês | MEDLINE | ID: mdl-37700297

RESUMO

BACKGROUND: Cardiac surgery-associated acute kidney injury (CSA-AKI) is frequent. While two network meta-analyses assessed the impact of pharmacological interventions to prevent CSA-AKI, none focused on non-pharmacological interventions. We aim to assess the effectiveness of non-pharmacological interventions to reduce the incidence of CSA-AKI. METHODS: We searched PubMed, Embase, Central and clinical trial registries from January 1, 2004 (first consensus definition of AKI) to July 1, 2023. Additionally, we conducted manual screening of abstracts of major anesthesia and intensive care conferences over the last 5 years and reference lists of relevant studies. We selected all randomized controlled trials (RCTs) assessing a non-pharmacological intervention to reduce the incidence of CSA-AKI, without language restriction. We excluded RCTs of heart transplantation or involving a pediatric population. The primary outcome variable was CSA-AKI. Two reviewers independently identified trials, extracted data and assessed risk of bias. Random-effects meta-analyses were conducted to calculate risk ratios (RRs) with 95% confidence intervals (CIs). We used the Grading of Recommendations Assessment, Development, and Evaluation to assess the quality of evidence. RESULTS: We included 86 trials (25,855 patients) evaluating 10 non-pharmacological interventions to reduce the incidence of CSA-AKI. No intervention had high-quality evidence to reduce CSA-AKI. Two interventions were associated with a significant reduction in CSA-AKI incidence, with moderate quality of evidence: goal-directed perfusion (RR, 0.55 [95% CI 0.40-0.76], I2 = 0%; Phet = 0.44) and remote ischemic preconditioning (RR, 0.86 [0.78-0.95]; I2 = 23%; Phet = 0.07). Pulsatile flow during cardiopulmonary bypass was associated with a significant reduction in CSA-AKI incidence but with very low quality of evidence (RR = 0.69 [0.48; 0.99]; I2 = 53%; Phet < 0.01). We found high quality of evidence for lack of effect of restrictive transfusion strategy (RR, 1.02 [95% CI 0.92; 1.12; Phet = 0.67; I2 = 3%) and tight glycemic control (RR, 0.86 [95% CI 0.55; 1.35]; Phet = 0.25; I2 = 26%). CONCLUSIONS: Two non-pharmacological interventions are likely to reduce CSA-AKI incidence, with moderate quality of evidence: goal-directed perfusion and remote ischemic preconditioning.


Assuntos
Injúria Renal Aguda , Anestesia , Anestesiologia , Procedimentos Cirúrgicos Cardíacos , Criança , Humanos , Procedimentos Cirúrgicos Cardíacos/efeitos adversos , Injúria Renal Aguda/etiologia , Injúria Renal Aguda/prevenção & controle , Ponte Cardiopulmonar
6.
Br J Surg ; 109(9): 872-879, 2022 08 16.
Artigo em Inglês | MEDLINE | ID: mdl-35833229

RESUMO

BACKGROUND: The overall natural history, risk of death and surgical burden of patients with multiple endocrine neoplasia type 1 (MEN1) is not well known. METHODS: Patients with MEN1 from a nationwide cohort were included. The survival of patients with MEN1 was compared with that of the general population using simulated controls. The cumulative probabilities of MEN1-specific operations and postoperative mortality were assessed, and surgical sequences were analysed using sunburst charts and Venn diagrams. RESULTS: A total of 1386 patients with MEN1 were included. Life expectancy was significantly reduced in patients with MEN1 compared with simulated controls from the general population, with a lifetime difference of 15 years. Mutations affecting the JunD interaction domain had a significant negative impact on survival. Survival for patients with MEN1 compared with the general population improved over time. The probability of experiencing at least one specific MEN1 operation was above 95 per cent after 75 years, and most patients had surgery at least twice during their lifetime. Time to a 50 per cent risk of MEN1 surgery was 30.5 years for patients born after 1960, compared with 47.9 years for those born before 1960. Sex and mutations affecting the JunD interacting domain had no impact on time to first surgery. There was considerable heterogeneity in surgical sequences, with no specific clinical pathway. CONCLUSION: Life expectancy was significantly lower among patients with MEN1 compared with the general population, and further decreased in patients with mutations affecting the JunD interacting domain. Almost all patients underwent at least one MEN1-specific operation during their lifetime, but there was no standardized sequence of surgery.


Assuntos
Neoplasia Endócrina Múltipla Tipo 1 , Neoplasias Pancreáticas , Estudos de Coortes , Humanos , Expectativa de Vida , Neoplasia Endócrina Múltipla Tipo 1/genética , Neoplasia Endócrina Múltipla Tipo 1/cirurgia , Mutação , Neoplasias Pancreáticas/cirurgia , Probabilidade
7.
Agric Syst ; 201: 103436, 2022 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-35663482

RESUMO

CONTEXT: In May 2020, approximately four months into the COVID-19 pandemic, the journal's editorial team realized there was an opportunity to collect information from a diverse range of agricultural systems on how the pandemic was playing out and affecting the functioning of agricultural systems worldwide. OBJECTIVE: The objective of the special issue was to rapidly collect information, analysis and perspectives from as many regions as possible on the initial impacts of the pandemic on global agricultural systems, The overall goal for the special issue was to develop a useful repository for this information as well as to use the journal's international reach to share this information with the agricultural systems research community and journal readership. METHODS: The editorial team put out a call for a special issue to capture the initial effects of the pandemic on the agricultural sector. We also recruited teams from eight global regions to write papers summarizing the impacts of the first waves of the pandemic in their area. RESULTS AND CONCLUSIONS: The work of the regional teams and the broader research community resulted in eight regional summary papers, as well as thirty targeted research articles. In these papers, we find that COVID-19 and global pandemic mitigation measures have had significant and sometimes unexpected impacts on our agricultural systems via shocks to agricultural labour markets, trade and value chains. And, given the high degree of overlap between low income populations and subsistence agricultural production in many regions, we also document significant shocks to food security for these populations, and the high potential for long term losses in terms of human, natural, institutional and economic capital. While we also documented instances of agricultural system resilience capacities, they were not universally accessible. We see particular need to shore up vulnerable agricultural systems and populations most negatively affected by the pandemic and to mitigate pandemic-related losses to preserve other agricultural systems policy objectives, such as improving food security, or addressing climate change. SIGNIFICANCE: Despite rapid development of vaccines, the pandemic continues to roll on as of the time of writing (early 2022). Only time will tell how the dynamics described in this Special Issue will play out in the coming years. Evidence of agricultural system resilience capacities provides some hopeful perspectives, but also highlights the need to boost these capacities across a wider cross section of agricultural systems and encourage agri-food systems transformation to prepare for more challenges ahead.

8.
Plant J ; 102(5): 1008-1025, 2020 06.
Artigo em Inglês | MEDLINE | ID: mdl-31930580

RESUMO

Hybridizations between closely related species commonly occur in the domestication process of many crops. Banana cultivars are derived from such hybridizations between species and subspecies of the Musa genus that have diverged in various tropical Southeast Asian regions and archipelagos. Among the diploid and triploid hybrids generated, those with seedless parthenocarpic fruits were selected by humans and thereafter dispersed through vegetative propagation. Musa acuminata subspecies contribute to most of these cultivars. We analyzed sequence data from 14 M. acuminata wild accessions and 10 M. acuminata-based cultivars, including diploids and one triploid, to characterize the ancestral origins along their chromosomes. We used multivariate analysis and single nucleotide polymorphism clustering and identified five ancestral groups as contributors to these cultivars. Four of these corresponded to known M. acuminata subspecies. A fifth group, found only in cultivars, was defined based on the 'Pisang Madu' cultivar and represented two uncharacterized genetic pools. Diverse ancestral contributions along cultivar chromosomes were found, resulting in mosaics with at least three and up to five ancestries. The commercially important triploid Cavendish banana cultivar had contributions from at least one of the uncharacterized genetic pools and three known M. acuminata subspecies. Our results highlighted that cultivated banana origins are more complex than expected - involving multiple hybridization steps - and also that major wild banana ancestors have yet to be identified. This study revealed the extent to which admixture has framed the evolution and domestication of a crop plant.


Assuntos
Genoma de Planta/genética , Musa/genética , Cromossomos de Plantas/genética , Produtos Agrícolas/genética , Hibridização Genética/genética
9.
Plant J ; 104(6): 1698-1711, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-33067829

RESUMO

Chromosome rearrangements and the way that they impact genetic differentiation and speciation have long raised questions from evolutionary biologists. They are also a major concern for breeders because of their bearing on chromosome recombination. Banana is a major crop that derives from inter(sub)specific hybridizations between various once geographically isolated Musa species and subspecies. We sequenced 155 accessions, including banana cultivars and representatives of Musa diversity, and genotyped-by-sequencing 1059 individuals from 11 progenies. We precisely characterized six large reciprocal translocations and showed that they emerged in different (sub)species of Musa acuminata, the main contributor to currently cultivated bananas. Most diploid and triploid cultivars analyzed were structurally heterozygous for 1 to 4 M. acuminata translocations, highlighting their complex origin. We showed that all translocations induced a recombination reduction of variable intensity and extent depending on the translocations, involving only the breakpoint regions, a chromosome arm, or an entire chromosome. The translocated chromosomes were found preferentially transmitted in many cases. We explore and discuss the possible mechanisms involved in this preferential transmission and its impact on translocation colonization.


Assuntos
Cromossomos de Plantas/genética , Evolução Molecular , Musa/genética , Translocação Genética/genética , Aneuploidia , Análise Citogenética , Hibridização in Situ Fluorescente
10.
BMC Plant Biol ; 21(1): 163, 2021 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-33794780

RESUMO

BACKGROUND: Greater yam (Dioscorea alata L.) is a major tropical and subtropical staple crop cultivated for its starchy tubers. Breeding of this dioecious species is hampered by its erratic flowering, yet little is currently known on the genetic determinism of its sexual reproduction. RESULT: Here we used a genome-wide association approach and identified a major genetic barrier to reproduction in yam on chromosome 1, as represented by two candidate genes. A deleterious effect on male fitness could be hypothesized considering the involvement of these two genes in male reproduction and the low frequency of this non-flowering dominant allele within the male genepool. We also extended the hypothesis of a XX/XY sex-determination system located on chromosome 6 in D. alata to encompass most of the species diversity. Moreover, a kompetitive allele-specific PCR (KASPar) marker was designed and validated that enables accurate cultivar sex estimation. The reconstruction of chromosome 6 associated with the detection of highly putative structural variations confirmed the possible involvement of a major part of the chromosome. CONCLUSION: The findings of this study, combined with proper estimation of accession ploidy levels to avoid endosperm incompatibility issues, could facilitate the design of future promising parental combinations in D. alata breeding programs. Moreover, the discovery of this genetic barrier to reproduction opens new avenues for gaining insight into yam reproductive biology and diversification.


Assuntos
Dioscorea/genética , Flores/crescimento & desenvolvimento , Regulação da Expressão Gênica , Melhoramento Vegetal , Dioscorea/crescimento & desenvolvimento , Flores/genética , Estudo de Associação Genômica Ampla , Reprodução/genética
11.
Crit Care Med ; 49(10): 1800-1811, 2021 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-33927122

RESUMO

OBJECTIVES: To investigate whether intervention effect estimates for mortality differ between blinded and nonblinded randomized controlled trials conducted in critical care. We used a meta-epidemiological approach, comparing effect estimates between blinded and nonblinded randomized controlled trials for the same research question. DATA SOURCES: Systematic reviews and meta-analyses of randomized controlled trials evaluating a therapeutic intervention on mortality in critical care, published between January 2009 and March 2019 in high impact factor general medical or critical care journals and by Cochrane. DATA EXTRACTION: For each randomized controlled trial included in eligible meta-analyses, we evaluated whether the trial was blinded (i.e., double-blinded and/or reporting adequate methods) or not (i.e., open-label, single-blinded, or unclear). We collected risk of bias evaluated by the review authors and extracted trial results. DATA SYNTHESIS: Within each meta-analysis, we compared intervention effect estimates between blinded and nonblinded randomized controlled trials by using a ratio of odds ratio (< 1 indicates larger estimates in nonblinded than blinded randomized controlled trials). We then combined ratio of odds ratios across meta-analyses to obtain the average relative difference between nonblinded and blinded trials. Among 467 randomized controlled trials included in 36 meta-analyses, 267 (57%) were considered blinded and 200 (43%) nonblinded. Intervention effect estimates were statistically significantly larger in nonblinded than blinded trials (combined ratio of odds ratio, 0.91; 95% CI, 0.84-0.99). We found no heterogeneity across meta-analyses (p = 0.72; I2 = 0%; τ2 = 0). Sensitivity analyses adjusting the main analysis on risk of bias items yielded consistent results. CONCLUSIONS: Intervention effect estimates of mortality were slightly larger in nonblinded than blinded randomized controlled trials conducted in critical care, but confounding cannot be excluded. Blinding of both patients and personnel is important to consider when possible in critical care trials, even when evaluating mortality.


Assuntos
Viés , Método Duplo-Cego , Mortalidade Hospitalar/tendências , Projetos de Pesquisa/normas , Método Simples-Cego , Estudos Epidemiológicos , Humanos , Ensaios Clínicos Controlados Aleatórios como Assunto/estatística & dados numéricos , Projetos de Pesquisa/estatística & dados numéricos
12.
Ann Bot ; 127(1): 7-20, 2021 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-32104882

RESUMO

BACKGROUND AND AIMS: Bananas (Musa spp.) are a major staple food for hundreds of millions of people in developing countries. The cultivated varieties are seedless and parthenocarpic clones of which the ancestral origin remains to be clarified. The most important cultivars are triploids with an AAA, AAB or ABB genome constitution, with A and B genomes provided by M. acuminata and M. balbisiana, respectively. Previous studies suggested that inter-genome recombinations were relatively common in banana cultivars and that triploids were more likely to have passed through an intermediate hybrid. In this study, we investigated the chromosome structure within the ABB group, composed of starchy cooking bananas that play an important role in food security. METHODS: Using SNP markers called from RADSeq data, we studied the chromosome structure of 36 ABB genotypes spanning defined taxonomic subgroups. To complement our understanding, we searched for similar events within nine AB hybrid genotypes. KEY RESULTS: Recurrent homologous exchanges (HEs), i.e. chromatin exchanges between A and B subgenomes, were unravelled with at least nine founding events (HE patterns) at the origin of ABB bananas prior to clonal diversification. Two independent founding events were found for Pisang Awak genotypes. Two HE patterns, corresponding to genotypes Pelipita and Klue Teparod, show an over-representation of B genome contribution. Three HE patterns mainly found in Indian accessions shared some recombined regions and two additional patterns did not correspond to any known subgroups. CONCLUSIONS: The discovery of the nine founding events allowed an investigation of the possible routes that led to the creation of the different subgroups, which resulted in new hypotheses. Based on our observations, we suggest different routes that gave rise to the current diversity in the ABB cultivars, routes involving primary AB hybrids, routes leading to shared HEs and routes leading to a B excess ratio. Genetic fluxes took place between M. acuminata and M. balbisiana, particularly in India, where these unbalanced AB hybrids and ABB allotriploids originated, and where cultivated M. balbisiana are abundant. The result of this study clarifies the classification of ABB cultivars, possibly leading to the revision of the classification of this subgroup.


Assuntos
Musa , Genoma de Planta , Genótipo , Índia , Musa/genética , Recombinação Genética
13.
Agric Syst ; 190: 103082, 2021 May.
Artigo em Inglês | MEDLINE | ID: mdl-36567888

RESUMO

Context: Identifying and developing resilient farming and food systems has emerged as a top priority during the Covid-19 pandemic. Many academics suggest that farming and food systems should move towards agroecological models to achieve better resilience. However, there was limited evidence to support this statement during the Covid-19 pandemic. Objective: Our objectives were to report evidence for the resilience of French organic dairy cattle farms and supply chains to the Covid-19 pandemic and to discuss the features of those farms and supply chains that promoted resilience. Methods: We combined online surveys with farmers, semi-structured interviews with supply chain actors and a review of the gray and technical literature, and whenever possible, we compared this qualitative data against quantitative industry data. We also asked farmers to rank 19 pre-identified risks according to their likelihood and potential impacts. Results and conclusions: We showed the pandemic had zero to moderate impacts on most farms. Among respondents, 38 farmers reported no impacts, another 43 experienced minor impacts on aspects such as their income and workload while only 5 faced major impacts, such as the closure of sales outlets. Most farms were family farms and were not greatly affected by worker availability issues. Moreover, the vast majority of these farms were nearly autonomous for livestock feeding and none reported input supply shortages or related impacts on farm functioning and productivity. The pandemic had moderate impacts on supply chains. Despite staff reductions, supply chains continued producing sufficient amounts of dairy products to meet consumer demand. To do so, they narrowed the scope of products manufactured to concentrate on a basic mix: milk, cream, butter and plain yogurt. Logistics were also adapted by hiring retired drivers to keep up with milk collection and reorganizing the delivery of products by shunting usual sub-level platforms that were saturated. Consequently, even after this pandemic, farmers remained more concerned with climate change-related risks on their farms than by sanitary risks. Several resilience factors were identified that promoted buffer and adaptive capacity at the farm level and that favored adaptive capacity at the supply chain level. Significance: These findings confirm the relevance of agroecological models in achieving resilience in farming and food systems against shocks such as the Covid-19 pandemic. This preliminary work carried out at the end of the first lock-down period needs to be pursued in order to understand the impacts of the Covid-19 pandemic over longer time horizons.

14.
Mol Biol Evol ; 36(1): 97-111, 2019 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-30403808

RESUMO

Admixture and polyploidization are major recognized eukaryotic genome evolutionary processes. Their impacts on genome dynamics vary among systems and are still partially deciphered. Many banana cultivars are triploid (sometimes diploid) interspecific hybrids between Musa acuminata (A genome) and M. balbisiana (B genome). They have no or very low fertility, are vegetatively propagated and have been classified as "AB," "AAB," or "ABB" based on morphological characters. We used NGS sequence data to characterize the A versus B chromosome composition of nine diploid and triploid interspecific cultivars, to compare the chromosome structures of A and B genomes and analyze A/B chromosome segregations in a polyploid context. We showed that interspecific recombination occurred frequently between A and B chromosomes. We identified two large structural variations between A and B genomes, a reciprocal translocation and an inversion that locally affected recombination and led to segregation distortion and aneuploidy in a triploid progeny. Interspecific recombination and large structural variations explained the mosaic genomes observed in edible bananas. The unprecedented resolution in deciphering their genome structure allowed us to start revisiting the origins of banana cultivars and provided new information to gain insight into the impact of interspecificity on genome evolution. It will also facilitate much more effective assessment of breeding strategies.


Assuntos
Segregação de Cromossomos , Genoma de Planta , Variação Estrutural do Genoma , Musa/genética , Recombinação Genética , Cromossomos de Plantas , Ploidias
15.
Genetica ; 148(2): 109-123, 2020 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-32361835

RESUMO

We explored diversity, distribution and evolutionary dynamics of Ty1-Copia retrotransposons in the genomes of the Hordeum murinum polyploid complex and related taxa. Phylogenetic and fluorescent in situ hybridization (FISH) analyses of reverse transcriptase sequences identified four Copia families in these genomes: the predominant BARE1 (including three groups or subfamilies, A, B and C), and the less represented RIRE1, IKYA and TAR-1. Within the BARE1 family, BARE1-A elements and a subgroup of BARE1-B elements (named B1) have proliferated in the allopolyploid members of the H. murinum complex (H. murinum and H. leporinum), and in their extant diploid progenitor, subsp. glaucum. Moreover, we found a specific amplification of BARE1-B elements within each Hordeum species surveyed. The low occurrence of RIRE1, IKYA and TAR-1 elements in the allopolyploid cytotypes suggests that they are either weakly represented or highly degenerated in their diploid progenitors. The results demonstrate that BARE1-A and BARE1-B1 Copia elements are particularly well represented in the genomes of the H. murinum complex and constitute its genomic hallmark. No BARE1-A and -B1 homologs were detected in the reference barley genome. The similar distribution of RT-Copia probes across chromosomes of diploid, tetraploid and hexaploid taxa of the murinum complex shows no evidence of proliferation following polyploidization.


Assuntos
Genoma de Planta/genética , Hordeum/genética , Retroelementos/genética , Variação Genética/genética , Genômica , Hibridização in Situ Fluorescente , Filogenia , Proteínas de Plantas/genética , Poliploidia
17.
Ann Bot ; 124(2): 319-329, 2019 09 24.
Artigo em Inglês | MEDLINE | ID: mdl-31241133

RESUMO

BACKGROUND AND AIMS: Banana cultivars are derived from hybridizations involving Musa acuminata subspecies. The latter diverged following geographical isolation in distinct South-east Asian continental regions and islands. Observation of chromosome pairing irregularities in meiosis of hybrids between these subspecies suggested the presence of large chromosomal structural variations. The aim of this study was to characterize such rearrangements. METHODS: Marker (single nucleotide polymorphism) segregation in a self-progeny of the 'Calcutta 4' accession and mate-pair sequencing were used to search for chromosomal rearrangements in comparison with the M. acuminata ssp. malaccensis genome reference sequence. Signature segment junctions of the revealed chromosome structures were identified and searched in whole-genome sequencing data from 123 wild and cultivated Musa accessions. KEY RESULTS: Two large reciprocal translocations were characterized in the seedy banana M. acuminata ssp. burmannicoides 'Calcutta 4' accession. One consisted of an exchange of a 240 kb distal region of chromosome 2 with a 7.2 Mb distal region of chromosome 8. The other involved an exchange of a 20.8 Mb distal region of chromosome 1 with a 11.6 Mb distal region of chromosome 9. Both translocations were found only in wild accessions belonging to the burmannicoides/burmannica/siamea subspecies. Only two of the 87 cultivars analysed displayed the 2/8 translocation, while none displayed the 1/9 translocation. CONCLUSION: Two large reciprocal translocations were identified that probably originated in the burmannica genetic group. Accurate characterization of these translocations should enhance the use of this disease resistance-rich burmannica group in breeding programmes.


Assuntos
Musa , Resistência à Doença , Humanos , Hibridização Genética , Índia , Ilhas
18.
Mol Biol Evol ; 34(9): 2140-2152, 2017 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-28575404

RESUMO

Most banana cultivars are triploid seedless parthenocarpic clones derived from hybridization between Musa acuminata subspecies and sometimes M. balbisiana. M. acuminata subspecies were suggested to differ by a few large chromosomal rearrangements based on chromosome pairing configurations in intersubspecies hybrids. We searched for large chromosomal rearrangements in a seedy M. acuminata ssp. malaccensis banana accession through mate-pair sequencing, BAC-FISH, targeted PCR and marker (DArTseq) segregation in its progeny. We identified a heterozygous reciprocal translocation involving two distal 3 and 10 Mb segments from chromosomes 01 and 04, respectively, and showed that it generated high segregation distortion, reduced recombination and linkage between chromosomes 01 and 04 in its progeny. The two chromosome structures were found to be mutually exclusive in gametes and the rearranged structure was preferentially transmitted to the progeny. The rearranged chromosome structure was frequently found in triploid cultivars but present only in wild malaccensis ssp. accessions, thus suggesting that this rearrangement occurred in M. acuminata ssp. malaccensis. We propose a mechanism for the spread of this rearrangement in Musa diversity and suggest that this rearrangement could have played a role in the emergence of triploid cultivars.


Assuntos
Musa/genética , Cromossomos de Plantas/genética , DNA de Plantas/genética , Evolução Molecular , Ligação Genética/genética , Genoma de Planta/genética , Hibridização Genética/genética , Análise de Sequência de DNA/métodos , Translocação Genética/genética
19.
BMC Plant Biol ; 18(1): 54, 2018 Apr 03.
Artigo em Inglês | MEDLINE | ID: mdl-29614957

RESUMO

BACKGROUND: Among semi-aquatic species of the legume genus Aeschynomene, some have the unique property of being root and stem-nodulated by photosynthetic Bradyrhizobium lacking the nodABC genes necessary for the production of Nod factors. These species provide an excellent biological system with which to explore the evolution of nodulation in legumes. Among them, Aeschynomene evenia has emerged as a model legume to undertake the genetic dissection of the so-called Nod-independent symbiosis. In addition to the genetic analysis of nodulation on a reference line, natural variation in a germplasm collection could also be surveyed to uncover genetic determinants of nodulation. To this aim, we investigated the patterns of genetic diversity in a collection of 226 Nod-independent Aeschynomene accessions. RESULTS: A combination of phylogenetic analyses, comprising ITS and low-copy nuclear genes, along with cytogenetic experiments and artificial hybridizations revealed the richness of the Nod-independent Aeschynomene group with the identification of 13 diploid and 6 polyploid well-differentiated taxa. A set of 54 SSRs was used to further delineate taxon boundaries and to identify different genotypes. Patterns of microsatellite diversity also illuminated the genetic basis of the Aeschynomene taxa that were all found to be predominantly autogamous and with a predicted simple disomic inheritance, two attributes favorable for genetics. In addition, taxa displaying a pronounced genetic diversity, notably A. evenia, A. indica and A. sensitiva, were characterized by a clear geographically-based genetic structure and variations in root and stem nodulation. CONCLUSION: A well-characterized germplasm collection now exists as a major genetic resource to thoroughly explore the natural variation of nodulation in response to different bradyrhizobial strains. Symbiotic polymorphisms are expected to be found notably in the induction of nodulation, in nitrogen fixation and also in stem nodulation. Subsequent genetic analysis and locus mapping will pave the way for the identification of the underlying genes through forward or reverse genetics. Such discoveries will significantly contribute to our understanding of the molecular mechanisms underpinning how some Aeschynomene species can be efficiently nodulated in a Nod-independent fashion.


Assuntos
Fabaceae/metabolismo , Fabaceae/microbiologia , Genoma de Planta/genética , Bradyrhizobium/fisiologia , Diploide , Fabaceae/genética , Genótipo , Ploidias , Poliploidia , Simbiose/genética , Simbiose/fisiologia
20.
BMC Genomics ; 17: 243, 2016 Mar 16.
Artigo em Inglês | MEDLINE | ID: mdl-26984673

RESUMO

BACKGROUND: Recent advances in genomics indicate functional significance of a majority of genome sequences and their long range interactions. As a detailed examination of genome organization and function requires very high quality genome sequence, the objective of this study was to improve reference genome assembly of banana (Musa acuminata). RESULTS: We have developed a modular bioinformatics pipeline to improve genome sequence assemblies, which can handle various types of data. The pipeline comprises several semi-automated tools. However, unlike classical automated tools that are based on global parameters, the semi-automated tools proposed an expert mode for a user who can decide on suggested improvements through local compromises. The pipeline was used to improve the draft genome sequence of Musa acuminata. Genotyping by sequencing (GBS) of a segregating population and paired-end sequencing were used to detect and correct scaffold misassemblies. Long insert size paired-end reads identified scaffold junctions and fusions missed by automated assembly methods. GBS markers were used to anchor scaffolds to pseudo-molecules with a new bioinformatics approach that avoids the tedious step of marker ordering during genetic map construction. Furthermore, a genome map was constructed and used to assemble scaffolds into super scaffolds. Finally, a consensus gene annotation was projected on the new assembly from two pre-existing annotations. This approach reduced the total Musa scaffold number from 7513 to 1532 (i.e. by 80%), with an N50 that increased from 1.3 Mb (65 scaffolds) to 3.0 Mb (26 scaffolds). 89.5% of the assembly was anchored to the 11 Musa chromosomes compared to the previous 70%. Unknown sites (N) were reduced from 17.3 to 10.0%. CONCLUSION: The release of the Musa acuminata reference genome version 2 provides a platform for detailed analysis of banana genome variation, function and evolution. Bioinformatics tools developed in this work can be used to improve genome sequence assemblies in other species.


Assuntos
Biologia Computacional/métodos , Genoma de Planta , Musa/genética , Mapeamento de Sequências Contíguas , Marcadores Genéticos , Sequenciamento de Nucleotídeos em Larga Escala , Anotação de Sequência Molecular , Análise de Sequência de DNA
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA