Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
1.
Org Biomol Chem ; 21(14): 2905-2909, 2023 04 05.
Artigo em Inglês | MEDLINE | ID: mdl-36942668

RESUMO

Trehalase is an important enzyme in the metabolic cascades of many organisms, catalysing the hydrolysis of the disaccharide trehalose. Herein we describe the first examples of fluorometric nanoprobes for detection of trehalase, based on trehalose-functionalised quantum dots (QDs). QDs cross-linked with trehalose form aggregates, which are released upon enzymatic cleavage of the trehalose glycosidic bond proportionally to the enzyme concentration, offering a unique and efficient approach for specific sensing of this biologically important enzyme.


Assuntos
Pontos Quânticos , Trealose , Trealose/química , Trealase/química , Trealase/metabolismo , Dissacarídeos/metabolismo
2.
Chem Soc Rev ; 51(23): 9694-9716, 2022 Nov 28.
Artigo em Inglês | MEDLINE | ID: mdl-36349720

RESUMO

In this review glycosidase activated prodrugs that target cancer cells are discussed. Glycosylated prodrugs undergo enzymatic bioconversion, cleaving the prodrug to release the anticancer drug at the desired site of action, hence minimising the toxic side effects associated with many current anticancer drugs. In addition, the presence of the carbohydrate moiety increases the aqueous solubility of the drugs, allowing for a more effective treatment. In the past decade, significant advancements have been made in this field that have led to the development of many novel carbohydrate-based prodrugs - ranging from simple glycoconjugates to complex self-assemblies and materials, which are discussed in detail herein.


Assuntos
Antineoplásicos , Neoplasias , Pró-Fármacos , Humanos , Pró-Fármacos/farmacologia , Pró-Fármacos/uso terapêutico , Glicosídeo Hidrolases , Neoplasias/tratamento farmacológico , Solubilidade , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , Carboidratos
3.
Inorg Chem ; 61(41): 16256-16265, 2022 Oct 17.
Artigo em Inglês | MEDLINE | ID: mdl-36007145

RESUMO

Zn ions (Zn2+) play an important biological role in many diseases; hence, an imaging method for monitoring the Zn2+ distribution in tissues could provide important clinical insights. Recently, we reported a potent Zn-sensitive probe based on the Gd-DO3A (DO3A = 1,4,7,10-tetraazacyclododecane-1,4,7-tricarboxylic acid), modified tyrosine. and di(2-picolyl)amine chelator for this metal cation, which generates an outstanding magnetic resonance imaging (MRI) response. Here we further explored the origin of this unprecedented response and expanded the choice of potential MRI probes by preparing the free acid version of the initial MRI sensor. We report a detailed investigation of the 1H NMR dispersion, 17O NMR, and isothermal titration calorimetry properties of these two MRI probes upon interaction with Zn2+. The performed experiments confirm selective interaction of the MRI probes and target metal cation, which causes substantial changes in the coordination sphere of the paramagnetic center. It also evidenced some aggregation, which enhances the relaxivity response. Interestingly, conversion of the methyl ester to the free carboxylic acid of the tyrosine moiety changes the nature of the aggregates and leads to a smaller relaxivity response. The probes interact with human serum albumin (HSA) in the absence of Zn2+, which leads to a possible modification of the coordination sphere of Gd3+ or a substantial change in the exchange rate of second-sphere water molecules. In the presence of Zn2+, the interaction with HSA is very weak, demonstrating the importance of the Zn2+ coordination sphere in the behavior of these systems.


Assuntos
Gadolínio , Zinco , Aminas , Ácidos Carboxílicos , Quelantes/química , Meios de Contraste/química , Meios de Contraste/farmacologia , Ésteres , Gadolínio/química , Humanos , Íons , Imageamento por Ressonância Magnética/métodos , Albumina Sérica Humana , Ácidos Tricarboxílicos , Tirosina , Água/química , Zinco/química
4.
Bioconjug Chem ; 32(5): 971-982, 2021 05 19.
Artigo em Inglês | MEDLINE | ID: mdl-33887134

RESUMO

Candida albicans causes some of the most prevalent hospital-acquired fungal infections, particularly threatening for immunocompromised patients. C. albicans strongly adheres to the surface of epithelial cells so that subsequent colonization and biofilm formation can take place. Divalent galactoside glycomimetic 1 was found to be a potent inhibitor of the adhesion of C. albicans to buccal epithelial cells. In this work, we explore the effect of multivalent presentations of glycomimetic 1 on its ability to inhibit yeast adhesion and biofilm formation. Tetra-, hexa-, and hexadecavalent displays of compound 1 were built on RAFT cyclopeptide- and polylysine-based scaffolds with a highly efficient and modular synthesis. Biological evaluation revealed that the scaffold choice significantly influences the activity of the lower valency conjugates, with compound 16, constructed on a tetravalent polylysine scaffold, found to inhibit the adhesion of C. albicans to human buccal epithelial cells more effectively than the glycomimetic 1; however, the latter performed better in the biofilm reduction assays. Interestingly, the higher valency glycoconjugates did not outperform the anti-adhesion activity of the original compound 1, and no significant effect of the core scaffold could be appreciated. SEM images of C. albicans cells treated with compounds 1, 14, and 16 revealed significant differences in the aggregation patterns of the yeast cells.


Assuntos
Materiais Biomiméticos/farmacologia , Candida albicans/citologia , Candida albicans/efeitos dos fármacos , Adesão Celular/efeitos dos fármacos , Células Epiteliais/microbiologia , Boca/citologia , Biofilmes/efeitos dos fármacos , Candida albicans/fisiologia , Células Epiteliais/efeitos dos fármacos , Glicoconjugados/metabolismo , Humanos
5.
Soft Matter ; 16(34): 7916-7926, 2020 Sep 14.
Artigo em Inglês | MEDLINE | ID: mdl-32724982

RESUMO

Glycosyl squaramides were synthesised and evaluated as low molecular weight gelators. Amphiphilic glycosyl squaramides 5 and 6, with a C-16 aliphatic chain, formed thermoreversible gels in polar organic solvents and 1 : 1 ethanol/water mixtures with high efficiency. Rheological analysis showed these gels achieve their structural stability 120 h after gelation and were robust, making them particularly suitable for biomedical applications. The interactions between solvent and gelator strongly influence SAFiN (Self-Assembled Fibrillar Network) formation, critical gelation concentration (CGC) and subsequent gel structure, as evidenced by SEM imaging of xerogels. Spectroscopic studies indicate that H-bonding is involved in the self-assembly of the glycosyl squaramides in organic solvents, while hydrophobic interactions are the major driving force for gel formation in the presence of water. The compounds described herein are the first reported examples of carbohydrate-squaramide conjugates capable of forming supramolecular gels.

6.
Future Med Chem ; 13(3): 313-334, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-32564615

RESUMO

Fungal infections with increasing resistance to conventional therapies are a growing concern. Candida albicans is a major opportunistic yeast responsible for mucosal and invasive infections. Targeting the initial step of the infection process (i.e., C. albicans adhesion to the host cell) is a promising strategy. A wide variety of molecules can interfere with adhesion processes via an assortment of mechanisms. Herein, we focus on how small molecules disrupt biosynthesis of fungal cell wall components and membrane structure, prevent the localization of GPI-anchor proteins, inhibit production of enzymes involved in adhesion, downregulate genes encoding adhesins and competitively inhibit receptor interactions. As a result, adhesion of C. albicans to host cells is reduced, paving the way to new classes of antifungal agents.


Assuntos
Antifúngicos/química , Candida albicans/metabolismo , Moléculas de Adesão Celular/metabolismo , Proteínas Fúngicas/metabolismo , Antifúngicos/metabolismo , Antifúngicos/farmacologia , Ácido Aspártico Proteases/antagonistas & inibidores , Ácido Aspártico Proteases/metabolismo , Candida albicans/patogenicidade , Moléculas de Adesão Celular/antagonistas & inibidores , Moléculas de Adesão Celular/genética , Parede Celular/efeitos dos fármacos , Parede Celular/metabolismo , Proteínas Fúngicas/antagonistas & inibidores , Proteínas Fúngicas/genética , Proteínas Ligadas por GPI/antagonistas & inibidores , Proteínas Ligadas por GPI/metabolismo , Polifenóis/química , Polifenóis/metabolismo , Polifenóis/farmacologia , Compostos de Amônio Quaternário/química , Compostos de Amônio Quaternário/metabolismo , Compostos de Amônio Quaternário/farmacologia , Bibliotecas de Moléculas Pequenas/química , Bibliotecas de Moléculas Pequenas/metabolismo , Bibliotecas de Moléculas Pequenas/farmacologia
7.
Pathogens ; 10(5)2021 May 08.
Artigo em Inglês | MEDLINE | ID: mdl-34066787

RESUMO

Multivalency is a strategy commonly used by medicinal carbohydrate chemists to increase the affinity of carbohydrate-based small molecules for their protein targets. Although this approach has been very successful in enhancing binding to isolated carbohydrate-binding proteins, anticipating the multivalent presentations that will improve biological activity in cellular assays remains challenging. In this work we investigate linear molecular scaffolds for the synthesis of a low valency presentation of a divalent galactoside 1, previously identified by us as an inhibitor of the adhesion of opportunistic fungal pathogen Candida albicans to buccal epithelial cells (BECs). Adhesion inhibition assays revealed that multivalent glycoconjugate 3 is more effective at blocking C. albicans adherence to BECs upon initial exposure to epithelial cells. Interestingly, 3 did not seem to have any effect when it was pre-incubated with yeast cells, in contrast to the original lead compound 1, which caused a 25% reduction of adhesion. In competition assays, where yeast cells and BECs were co-incubated, multivalent glycoconjugate 3 inhibited up to 49% C. albicans adherence in a dose-dependent manner. The combined effect of compound 1 towards both yeast cells and BECs allowed it to achieve over 60% inhibition of the adhesion of C. albicans to BECs in competition assays.

8.
Pharmaceuticals (Basel) ; 13(12)2020 Nov 30.
Artigo em Inglês | MEDLINE | ID: mdl-33266014

RESUMO

Zinc and copper are essential cations involved in numerous biological processes, and variations in their concentrations can cause diseases such as neurodegenerative diseases, diabetes and cancers. Hence, detection and quantification of these cations are of utmost importance for the early diagnosis of disease. Magnetic resonance imaging (MRI) responsive contrast agents (mainly Lanthanide(+III) complexes), relying on a change in the state of the MRI active part upon interaction with the cation of interest, e.g., switch ON/OFF or vice versa, have been successfully utilized to detect Zn2+ and are now being developed to detect Cu2+. These paramagnetic probes mainly exploit the relaxation-based properties (T1-based contrast agents), but also the paramagnetic induced hyperfine shift properties (paraCEST and parashift probes) of the contrast agents. The challenges encountered going from Zn2+ to Cu2+ detection will be stressed and discussed herein, mainly involving the selectivity of the probes for the cation to detect and their responsivity at physiologically relevant concentrations. Depending on the response mechanism, the use of fast-field cycling MRI seems promising to increase the detection field while keeping a good response. In vivo applications of cation responsive MRI probes are only in their infancy and the recent developments will be described, along with the associated quantification problems. In the case of relaxation agents, the presence of another method of local quantification, e.g., synchrotron X-Ray fluorescence, single-photon emission computed tomography (SPECT) or positron emission tomography (PET) techniques, or 19F MRI is required, each of which has its own advantages and disadvantages.

9.
RSC Med Chem ; 11(12): 1386-1401, 2020 Dec 17.
Artigo em Inglês | MEDLINE | ID: mdl-34095846

RESUMO

Candida albicans is one of the most prevalent fungal pathogens involved in hospital acquired infections. It binds to glycans at the surface of epithelial cells and initiates infection. This process can be blocked by synthetic carbohydrates that mimic the structure of cell surface glycans. Herein we report the evaluation of a series of divalent glycosides featuring aromatic (benzene, squaramide) and bicyclic aliphatic (norbornene) scaffolds, with the latter being the first examples of their kind as small molecule anti-adhesion glycoconjugates. Galactosides 1 and 6, built on an aromatic core, were most efficient inhibitors of adhesion of C. albicans to buccal epithelial cells, displacing up to 36% and 48%, respectively, of yeast already attached to epithelial cells at 138 µM. Remarkably, cis-endo-norbornene 21 performed comparably to benzene-core derivatives. Conformational analysis reveals a preference for compounds 1 and 21 to adopt folded conformations. These results highlight the potential of norbornenes as a new class of aliphatic scaffolds for the synthesis of anti-adhesion compounds.

10.
Eur J Med Chem ; 160: 82-93, 2018 Dec 05.
Artigo em Inglês | MEDLINE | ID: mdl-30321803

RESUMO

The yeast Candida albicans is an opportunistic fungal pathogen which induces superficial and systemic infections in immunocompromised patients. Adherence to host tissue is critical to its ability to colonise and infect the host. The work presented here describes the synthesis of a small library of aromatic glycoconjugates (AGCs) and their evaluation as inhibitors of C. albicans adherence to exfoliated buccal epithelial cells (BECs). We identified a divalent galactoside, ligand 2a, capable of displacing over 50% of yeast cells already attached to the BECs. Fluorescence imaging indicates that 2a may bind to structural components of the fungal cell wall.


Assuntos
Candida albicans/efeitos dos fármacos , Células Epiteliais/efeitos dos fármacos , Glicoconjugados/farmacologia , Candida albicans/citologia , Candida albicans/metabolismo , Adesão Celular/efeitos dos fármacos , Relação Dose-Resposta a Droga , Células Epiteliais/metabolismo , Glicoconjugados/síntese química , Glicoconjugados/química , Humanos , Ligantes , Microscopia Confocal , Estrutura Molecular , Imagem Óptica , Relação Estrutura-Atividade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA