Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 54
Filtrar
1.
Molecules ; 29(12)2024 Jun 14.
Artigo em Inglês | MEDLINE | ID: mdl-38930901

RESUMO

This study presents fibers based on methacrylic acid-methyl methacrylate (Eudragit L100) as Cu(II) adsorbents, resulting in antimicrobial complexes. Eudragit L100, an anionic copolymer synthesized by radical polymerization, was electrospun in dimethylformamide (DMF) and ethanol (EtOH). The electrospinning process was optimized through a 22-factorial design, with independent variables (copolymer concentration and EtOH/DMF volume ratio) and three repetitions at the central point. The smallest average fiber diameter (259 ± 53 nm) was obtained at 14% w/v Eudragit L100 and 80/20 EtOH/DMF volume ratio. The fibers were characterized using scanning electron microscopy (SEM), infrared spectroscopy in attenuated total reflectance mode (FTIR-ATR), and differential scanning calorimetry (DSC). The pseudo-second-order mechanism explained the kinetic adsorption toward Cu(II). The fibers exhibited a maximum adsorption capacity (qe) of 43.70 mg/g. The DSC analysis confirmed the Cu(II) absorption, indicating complexation between metallic ions and copolymer networks. The complexed fibers showed a lower degree of swelling than the non-complexed fibers. The complexed fibers exhibited bacteriostatic activity against Gram-negative (Pseudomonas aeruginosa) and Gram-positive (Staphylococcus aureus) bacteria. This study successfully optimized the electrospinning process to produce thin fibers based on Eudragit L100 for potential applications as adsorbents for Cu(II) ions in aqueous media and for controlling bacterial growth.


Assuntos
Cobre , Ácidos Polimetacrílicos , Cobre/química , Ácidos Polimetacrílicos/química , Anti-Infecciosos/farmacologia , Anti-Infecciosos/química , Adsorção , Espectroscopia de Infravermelho com Transformada de Fourier , Staphylococcus aureus/efeitos dos fármacos , Metacrilatos/química , Cinética , Varredura Diferencial de Calorimetria , Testes de Sensibilidade Microbiana
2.
Molecules ; 26(15)2021 Jul 27.
Artigo em Inglês | MEDLINE | ID: mdl-34361681

RESUMO

Gelatin (GE), amino-functionalized polyphenolic tannin derivative (TN), and graphene oxide (GO) were associated to yield thermo- and pH-responsive hydrogels for the first time. Durable hydrogel assemblies for drug delivery purposes were developed using the photosensitizer methylene blue (MB) as a drug model. The cooling GE/TN blends provide brittle physical assemblies. To overcome this disadvantage, different GO contents (between 0.31% and 1.02% wt/wt) were added to the GE/TN blend at 89.7/10.3 wt/wt. FTIR and RAMAN spectroscopy analyses characterized the materials, indicating GO presence in the hydrogels. Incorporation studies revealed a total MB (0.50 mg/mL) incorporation into the GE/TN-GO hydrogel matrices. Additionally, the proposed systems present a mechanical behavior similar to gel. The GO presence in the hydrogel matrices increased the elastic modulus from 516 to 1650 Pa. SEM revealed that hydrogels containing MB present higher porosity with interconnected pores. Dissolution and swelling degree studies revealed less stability of the GE/TN-GO-MB hydrogels in SGF medium (pH 1.2) than SIF (pH 6.8). The degradation increased in SIF with the GO content, making the polymeric matrices more hydrophilic. MB release studies revealed a process controlled by Fickian diffusion. Our results point out the pH-responsible behavior of mechanically reinforced GE/TN-GO-MB hydrogels for drug delivery systems purposes.


Assuntos
Sistemas de Liberação de Medicamentos/métodos , Gelatina/química , Grafite/química , Hidrogéis/química , Azul de Metileno/administração & dosagem , Taninos/química , Temperatura de Transição , Materiais Biocompatíveis/química , Difusão , Liberação Controlada de Fármacos , Módulo de Elasticidade , Concentração de Íons de Hidrogênio , Interações Hidrofóbicas e Hidrofílicas , Transição de Fase , Porosidade
3.
Int J Mol Sci ; 21(22)2020 Nov 17.
Artigo em Inglês | MEDLINE | ID: mdl-33212884

RESUMO

Pectin and chitosan films containing glycerol (Gly) at 5, 10, 15, 20, 30, and 40 wt % were prepared in an aqueous HCl solution (0.10 M) by the solvent evaporation method. The unwashed film (UF) containing 40 wt % Gly (UF40) had elongation at break (ε, %) of 19%. Washed films (WFs) had high tensile strength (σ > 46 MPa) and low elongation at break (ε, <5.0%), enabling their use in food packaging applications. The polymers' self-assembling occurred during the washing, increasing the stiffness. The XPS analysis suggests that some HCl is lost during the drying process, resulting in a low acid content on the UF surfaces. The UF40 (at 5.0 mg/mL) exhibits cytocompatibility toward mammalian cells and antimicrobial and anti-adhesive properties against Escherichia coli. The remaining HCl in the UF40 can be a disadvantage for food packaging applications; the UF40 (∅ = 8.5 mm; 55 µm thickness) releases H3O+/HCl, reducing the pH to approximately 3.0 when kept in 200 mL distilled water for approximately 30 min. Therefore, we propose the use of UF40 to coat commercial food packaging. The UF40 has low permeability to water vapor and oxygen and works as a barrier against ultraviolet light. The UF40 is also colorless and completely transparent. The UF40 maintained tomatoes' structural integrity for 18 days at room temperature with no oxidation or microorganism contamination. This paper presents a critical viewpoint concerning chitosan-based films with antimicrobial activities.


Assuntos
Antibacterianos/química , Quitosana/química , Materiais Revestidos Biocompatíveis/química , Escherichia coli/crescimento & desenvolvimento , Embalagem de Alimentos , Glicerol/química , Membranas Artificiais , Pectinas/química
4.
Nanotechnology ; 28(4): 045206, 2017 Jan 27.
Artigo em Inglês | MEDLINE | ID: mdl-27997366

RESUMO

HER2 antigen is a marker used for breast cancer diagnosis and prevention. Its determination has great importance since breast cancer is one of the most insidious types of cancer in women. HER2 antigen assessment in human serum is traditionally achieved by enzyme-linked immunosorbent assay (ELISA method), but it has some disadvantages, such as suppressing the thermodynamic-kinetic studies regarding the antibody-antigen interaction, and the use of labeled molecules that can promote false positive responses. Biosensors based on surface plasmon resonance (SPR) are sensitive optical techniques widely applied on bioassays. The plasmonic devices do not operate with labeled molecules, overcoming conventional immunoassay limitations, and enabling a direct detection of target analytes. In this way, a new SPR biosensor to assess HER2 antigen has been proposed, using nanohole arrays on a gold thin film by signal transduction of transmitted light measurements from array image acquisitions. These metallic nanostructures may couple the light directly on surface plasmons using a simple collinear arrangement. The proposed device reached an average sensitivity for refractive index (RI) variation on a metal surface of 4146 intensity units/RIU (RIU = RI units). The device feasibility on biomolecular assessment was evaluated. For this, 3 ng ml-1 known HER2 antigen concentration was efficiently flowed (using a microfluidic system) and detected from aqueous solutions. This outcome shows that the device may be a powerful apparatus for bioassays, particularly toward breast cancer diagnosis and prognosis.


Assuntos
Antígenos/análise , Processamento de Imagem Assistida por Computador , Receptor ErbB-2/análise , Ressonância de Plasmônio de Superfície/métodos , Ouro/química , Humanos , Nanopartículas/química , Estreptavidina/química
5.
J Sci Food Agric ; 97(10): 3469-3475, 2017 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-27873315

RESUMO

BACKGROUND: The aim of this work was to improve the nutritional quality of Nile tilapia meat through enriched diets with conjugated isomers of linolenic acid from tung oil. The transfer process of conjugated fatty acids (CFAs) into fish muscle tissue was evaluated by gas chromatography-flame ionization detection (GC-FID) and easy ambient sonic-spray ionization mass spectrometry (EASI-MS). RESULTS: The results showed that conjugated fatty acids were transferred from enriched diet for muscle tissue of Nile tilapia. Conjugated linoleic acids biosynthesis from conjugated linolenic acids was also observed after 10 days. Other important fatty acids such as docosahexaenoic (DHA), eicosapentaenoic (EPA) and arachidonic (AA) acids were also identified over time; however, DHA showed the highest concentration when compared with EPA and AA compounds. CONCLUSION: Therefore, the nutritional quality of Nile tilapia was improved through feeding with enriched diets. The ingestion of these fish may contribute to reaching adequate levels of daily CFA consumption. Furthermore, other important substances which play an important role in human metabolism, such as EPA, DHA and AA, can also be ingested together with CFA. © 2016 Society of Chemical Industry.


Assuntos
Ração Animal/análise , Ciclídeos/metabolismo , Ácidos Linoleicos Conjugados/metabolismo , Carne/análise , Animais , Cromatografia Gasosa-Espectrometria de Massas , Ácidos Linoleicos Conjugados/química , Músculo Esquelético/química , Músculo Esquelético/metabolismo , Ácido alfa-Linolênico/análise , Ácido alfa-Linolênico/metabolismo
6.
Int J Mol Sci ; 15(12): 22438-70, 2014 Dec 04.
Artigo em Inglês | MEDLINE | ID: mdl-25486057

RESUMO

Zein is a biodegradable and biocompatible material extracted from renewable resources; it comprises almost 80% of the whole protein content in corn. This review highlights and describes some zein and zein-based materials, focusing on biomedical applications. It was demonstrated in this review that the biodegradation and biocompatibility of zein are key parameters for its uses in the food-packing, biomedical and pharmaceutical fields. Furthermore, it was pointed out that the presence of hydrophilic-hydrophobic groups in zein chains is a very important aspect for obtaining material with different hydrophobicities by mixing with other moieties (polymeric or not), but also for obtaining derivatives with different properties. The physical and chemical characteristics and special structure (at the molecular, nano and micro scales) make zein molecules inherently superior to many other polymers from natural sources and synthetic ones. The film-forming property of zein and zein-based materials is important for several applications. The good electrospinnability of zein is important for producing zein and zein-based nanofibers for applications in tissue engineering and drug delivery. The use of zein's hydrolysate peptides for reducing blood pressure is another important issue related to the application of derivatives of zein in the biomedical field. It is pointed out that the biodegradability and biocompatibility of zein and other inherent properties associated with zein's structure allow a myriad of applications of such materials with great potential in the near future.


Assuntos
Tecnologia Biomédica , Embalagem de Alimentos/tendências , Preparações Farmacêuticas/química , Zeína/química , Materiais Biocompatíveis/química , Biodegradação Ambiental , Zeína/ultraestrutura
7.
Int J Mol Sci ; 15(11): 20800-32, 2014 Nov 13.
Artigo em Inglês | MEDLINE | ID: mdl-25402643

RESUMO

Chitosan, which is derived from a deacetylation reaction of chitin, has attractive antimicrobial activity. However, chitosan applications as a biocide are only effective in acidic medium due to its low solubility in neutral and basic conditions. Also, the positive charges carried by the protonated amine groups of chitosan (in acidic conditions) that are the driving force for its solubilization are also associated with its antimicrobial activity. Therefore, chemical modifications of chitosan are required to enhance its solubility and broaden the spectrum of its applications, including as biocide. Quaternization on the nitrogen atom of chitosan is the most used route to render water-soluble chitosan-derivatives, especially at physiological pH conditions. Recent reports in the literature demonstrate that such chitosan-derivatives present excellent antimicrobial activity due to permanent positive charge on nitrogen atoms side-bonded to the polymer backbone. This review presents some relevant work regarding the use of quaternized chitosan-derivatives obtained by different synthetic paths in applications as antimicrobial agents.


Assuntos
Anti-Infecciosos/química , Anti-Infecciosos/farmacologia , Quitosana/análogos & derivados , Quitosana/farmacologia , Animais , Anti-Infecciosos/síntese química , Bactérias/efeitos dos fármacos , Infecções Bacterianas/tratamento farmacológico , Materiais Biocompatíveis/síntese química , Materiais Biocompatíveis/química , Materiais Biocompatíveis/farmacologia , Quitosana/síntese química , Fungos/efeitos dos fármacos , Humanos , Micoses/tratamento farmacológico , Viroses/tratamento farmacológico , Vírus/efeitos dos fármacos
8.
Int J Biol Macromol ; 257(Pt 1): 128461, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38042320

RESUMO

Environmental pollution caused by non-biodegradable plastic pollutants adversely affects various ecosystems. This study proposes the development of novel functional and biodegradable films based on corn starch (CST) and pectin (PEC) containing zinc oxide nanoparticles (ZnONPs) from the casting method. The films exhibited processability, transparency, low water vapor permeation, and desirable mechanical properties for food packaging and coating applications. The ZnONPs acted as a plasticizer, enhancing the film elongation at the break, increasing the pec25-1 (PEC 25 wt% and ZnONPs 1 wt%) elongation from 79.85 to 162.32 %. The improved film elasticity supported by ZnONPs reduced the material stiffness. However, the films still demonstrated an average tensile strength (0.69 MPa) 17-fold higher than the tensile strength (0.04 MPa) of the non-biodegradable commercial film based on poly(vinyl chloride). Furthermore, the ZnONPs enhanced the UV-blocking capabilities of the films, leading to wettable materials with water contact angles lower than 90°. The films showed high biodegradation rates under natural disposal conditions. The results indicated that the pec25-1/ZnONPs film is a promising eco-friendly coating in food preservation due to its biodegradability, suitable mechanical properties, low water vapor permeability, and UV-blocking properties.


Assuntos
Nanopartículas , Óxido de Zinco , Pectinas , Vapor , Ecossistema , Embalagem de Alimentos/métodos , Amido
9.
Materials (Basel) ; 17(15)2024 Jul 30.
Artigo em Inglês | MEDLINE | ID: mdl-39124423

RESUMO

Human hair, composed primarily of keratin, represents a sustainable waste material suitable for various applications. Synthesizing keratin nanoparticles (KNPs) from human hair for biomedical uses is particularly attractive due to their biocompatibility. In this study, keratin was extracted from human hair using concentrated sulfuric acid as the hydrolysis agent for the first time. This process yielded KNPs in both the supernatant (KNPs-S) and precipitate (KNPs-P) phases. Characterization involved scanning electron microscopy (SEM), Fourier-transform infrared spectroscopy (FTIR), Zeta potential analysis, X-ray diffraction (XRD), and thermogravimetric analysis (TG). KNPs-S and KNPs-P exhibited average diameters of 72 ± 5 nm and 27 ± 5 nm, respectively. The hydrolysis process induced a structural rearrangement favoring ß-sheet structures over α-helices in the KNPs. These nanoparticles demonstrated negative Zeta potentials across the pH spectrum. KNPs-S showed higher cytotoxicity (CC50 = 176.67 µg/mL) and hemolytic activity, likely due to their smaller size compared to KNPs-P (CC50 = 246.21 µg/mL), particularly at concentrations of 500 and 1000 µg/mL. In contrast, KNPs-P did not exhibit hemolytic activity within the tested concentration range of 32.5 to 1000 µg/mL. Both KNPs demonstrated cytocompatibility with fibroblast cells in a dose-dependent manner. Compared to other methods reported in the literature and despite requiring careful washing and neutralization steps, sulfuric acid hydrolysis proved effective, rapid, and feasible for producing cytocompatible KNPs (biomaterials) in single-step synthesis.

10.
J Funct Biomater ; 14(11)2023 Nov 18.
Artigo em Inglês | MEDLINE | ID: mdl-37998123

RESUMO

Bacterial infections are a common mode of failure for medical implants. This study aims to develop antibacterial polyelectrolyte multilayer (PEM) coatings that contain a plant-derived condensed tannin polymer (Tanfloc, TAN) with inherent antimicrobial activity. Tanfloc is amphoteric, and herein we show that it can be used as either a polyanion or a polycation in PEMs, thereby expanding the possibility of its use in PEM coatings. PEMs are ordinarily formed using a polycation and a polyanion, in which the functional (ionic) groups of the two polymers are complexed to each other. However, using the amphoteric polymer Tanfloc with weakly basic amine and weakly acidic catechol and pyrogallol groups enables PEM formation using only one or the other of its functional groups, leaving the other functional group available to impart antibacterial activity. This work demonstrates Tanfloc-containing PEMs using multiple counter-polyelectrolytes including three polyanionic glycosaminoglycans of varying charge density, and the polycations N,N,N-trimethyl chitosan and polyethyleneimine. The layer-by-layer (LbL) assembly of PEMs was monitored using in situ Fourier-transform surface plasmon resonance (FT-SPR), confirming a stable LbL assembly. X-ray photoelectron spectroscopy (XPS) was used to evaluate surface chemistry, and atomic force microscopy (AFM) was used to determine the surface roughness. The LDH release levels from cells cultured on the Tanfloc-containing PEMs were not statistically different from those on the negative control (p > 0.05), confirming their non-cytotoxicity, while exhibiting remarkable antiadhesive and bactericidal properties against Pseudomonas aeruginosa (P. aeruginosa) and Staphylococcus aureus (S. aureus), respectively. The antibacterial effects were attributed to electrostatic interactions and Tanfloc's polyphenolic nature. This work underscores the potential of Tanfloc as a versatile biomaterial for combating infections on surfaces.

11.
Int J Biol Macromol ; 253(Pt 5): 127087, 2023 Dec 31.
Artigo em Inglês | MEDLINE | ID: mdl-37769774

RESUMO

Given the environmental issues caused by the extensive use of conventional petroleum-based packaging, this work proposes functional films based on commercial κ-carrageenan (κc), poly(vinyl alcohol) (PVA), and gallic acid (GA) prepared by the "casting" method. Metallic ions in the κc composition stabilized the films, supporting processability and suitable mechanical properties. However, the incorporated GA amount (6.25 and 10 wt%) in the films created from an aqueous κc solution at 3.0 % wt/v (κc3) prevented crystalline domains in the resulting materials. The κc3/GA6.25 and κc3/GA10 films had less tensile strength (8.50 ± 0.61 and 10.28 ± 0.65 MPa) and high elongation at break (2.36 ± 0.16 and 1.19 ± 0.17 %) compared to the other samples, respectively. Low κc contents (κc2.5/GA6.25 and κc2.5/GA10) promoted stiff films and less permeability to water vapor (5.36 ± 0.51 and 3.76 ± 0.02 [×10-12 g(Pa × m × s)-1], respectively. The κc/GA weight ratio also influenced the film wettability, indicating water contact angles (WCAs) between 55 and 74°. The surface wettability implies a low oil permeability and high water swelling capacity of up to 1600 %. The κc/GA also played an essential role in the film's antimicrobial action against Staphylococcus aureus and Escherichia coli. Thus, the κc3/GA10 film showed suitable physical, chemical, and biological properties, having the potential to be applied as food coatings.


Assuntos
Ácido Gálico , Álcool de Polivinil , Carragenina/química , Álcool de Polivinil/química , Resistência à Tração , Permeabilidade , Escherichia coli , Embalagem de Alimentos/métodos
12.
Int J Biol Macromol ; 241: 124497, 2023 Jun 30.
Artigo em Inglês | MEDLINE | ID: mdl-37080405

RESUMO

Carboxymethylcellulose (CMC) and keratin nanoparticle (KNP) hydrogels were obtained, characterized, and applied as drug delivery systems (DDSs) for the first time. Lyophilized CMC/KNP mixtures containing 10, 25, and 50 wt% of KNPs were kept at 170 °C for 90 min to crosslink CMC chains through a solid-state reaction with the KNPs. The hydrogels were characterized by infrared spectroscopy, thermal analyses, X-ray diffraction, mechanical measurements, and scanning electron microscopy. The infrared spectra indicated the formation of ester and amide linkages between crosslinked CMC and KNPs. The elastic modulus of the hydrogel containing 10 wt% KNPs was 2-fold higher than that of the hydrogel containing 50 wt% KNPs. The mechanical properties influenced the hydrogel stability and water uptake. The anti-inflammatory prednisolone (PRED) drug was incorporated into the hydrogels, and the release mechanism was investigated. The hydrogels supported PRED release by drug desorption for approximately 360 h. A sustained release mechanism was achieved. The CMC/KNP and CMC/KNP/PRED hydrogels were cytocompatible toward mammalian cells. The CMC/KNP/PRED set imparted the highest cell viability after 7 days of incubation. This study showed a straightforward procedure to create DDSs (chemically crosslinked) based on polysaccharides and proteins for efficient PRED delivery.


Assuntos
Hidrogéis , Nanopartículas , Animais , Hidrogéis/química , Queratinas , Carboximetilcelulose Sódica/química , Prednisolona/farmacologia , Anti-Inflamatórios , Mamíferos
13.
Biomacromolecules ; 13(11): 3711-22, 2012 Nov 12.
Artigo em Inglês | MEDLINE | ID: mdl-22998803

RESUMO

N-Trimethyl chitosan (TMC), an antibacterial agent, and heparin (HP), an antiadhesive biopolymer, were alternately deposited on modified polystyrene films, as substrates, to built antiadhesive and antibacterial multilayer films. The properties of the multilayer films were investigated by Fourier transform infrared spectroscopy, atomic force microscopy, scanning electron microscopy, and Kelvin force microscopy. In vitro studies of controlled release of HP were evaluated in simulated intestinal fluid and simulated gastric fluid. The initial adhesion test of E. coli on multilayer films surface showed effective antiadhesive properties. The in vitro antibacterial test indicated that the multilayer films of TMC/HP based on TMC80 can kill the E. coli bacteria. Therefore, antiadhesive and antibacterial multilayer films may have good potential for coatings and surface modification of biomedical applications.


Assuntos
Antibacterianos/química , Aderência Bacteriana/efeitos dos fármacos , Materiais Biocompatíveis/química , Quitosana/química , Heparina/química , Antibacterianos/farmacologia , Biopolímeros , Quitosana/farmacologia , Escherichia coli/efeitos dos fármacos , Escherichia coli/fisiologia , Heparina/farmacocinética , Heparina/farmacologia , Microscopia de Força Atômica , Microscopia Eletrônica de Varredura , Poliestirenos , Espectroscopia de Infravermelho com Transformada de Fourier , Propriedades de Superfície
14.
Front Pharmacol ; 13: 854859, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35462891

RESUMO

Polymer-based nanocarriers require extensive knowledge of their chemistries to learn functionalization strategies and understand the nature of interactions that they establish with biological entities. In this research, the poly (ß-amino ester) (PßAE-447) was synthesized and characterized, aimed to identify the influence of some key parameters in the formulation process. Initially; PßAE-447 was characterized for aqueous solubility, swelling capacity, proton buffering ability, and cytotoxicity study before nanoparticles formulation. Interestingly, the polymer-supported higher cell viability than the Polyethylenimine (PEI) at 100 µg/ml. PßAE-447 complexed with GFP encoded plasmid DNA (pGFP) generated nanocarriers of 184 nm hydrodynamic radius (+7.42 mV Zeta potential) for cell transfection. Transfection assays performed with PEGylated and lyophilized PßAE-447/pDNA complexes on HEK-293, BEAS-2B, and A549 cell lines showed better transfection than PEI. The outcomes toward A549 cells (above 66%) showed the highest transfection efficiency compared to the other cell lines. Altogether, these results suggested that characterizing physicochemical properties pave the way to design a new generation of PßAE-447 for gene delivery.

15.
Carbohydr Polym ; 251: 117079, 2021 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-33142622

RESUMO

In this study, a surface modification strategy using natural biopolymers on titanium is proposed to improve bone healing and promote rapid and successful osseointegration of orthopedic implants. Titania nanotubes were fabricated via an anodization process and the surfaces were further modified with polyelectrolyte multilayers (PEMs) based on Tanfloc (a cationic tannin derivative) and glycosaminoglycans (heparin and hyaluronic acid). Scanning electron microscopy (SEM), water contact angle measurements, and X-ray photoelectron spectroscopy were used to characterize the surfaces. Adipose-derived stem cells (ADSCs) were seeded on the surfaces, and the cell viability, adhesion, and proliferation were investigated. Osteogenesis was induced and osteogenic differentiation of human ADSCs on the surfaces was evaluated via mineralization and protein expression assays, immunofluorescent staining, and SEM. The Tanfloc/heparin PEMs on titania nanotubes improved the rate of osteogenic differentiation of ADSCs as well as the bone mineral deposition, and is therefore a promising approach for use in orthopedic implants.


Assuntos
Tecido Adiposo/citologia , Heparina/química , Nanotubos/química , Polieletrólitos/química , Células-Tronco/citologia , Taninos/química , Titânio/química , Tecido Adiposo/efeitos dos fármacos , Tecido Adiposo/metabolismo , Anticoagulantes/química , Anticoagulantes/farmacologia , Adesão Celular/efeitos dos fármacos , Diferenciação Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Células Cultivadas , Heparina/farmacologia , Humanos , Ácido Hialurônico/química , Osteogênese , Polieletrólitos/farmacologia , Células-Tronco/efeitos dos fármacos , Células-Tronco/metabolismo , Propriedades de Superfície , Taninos/farmacologia
16.
Pharmaceutics ; 13(5)2021 Apr 27.
Artigo em Inglês | MEDLINE | ID: mdl-33925380

RESUMO

Polysaccharide-based materials created by physical processes have received considerable attention for biomedical applications. These structures are often made by associating charged polyelectrolytes in aqueous solutions, avoiding toxic chemistries (crosslinking agents). We review the principal polysaccharides (glycosaminoglycans, marine polysaccharides, and derivatives) containing ionizable groups in their structures and cellulose (neutral polysaccharide). Physical materials with high stability in aqueous media can be developed depending on the selected strategy. We review strategies, including coacervation, ionotropic gelation, electrospinning, layer-by-layer coating, gelation of polymer blends, solvent evaporation, and freezing-thawing methods, that create polysaccharide-based assemblies via in situ (one-step) methods for biomedical applications. We focus on materials used for growth factor (GFs) delivery, scaffolds, antimicrobial coatings, and wound dressings.

17.
Int J Biol Macromol ; 193(Pt B): 1813-1822, 2021 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-34774866

RESUMO

Biodegradable and eco-friendly adsorbents composed of natural carbohydrates have been used to replace carbon-based materials. This study presents a natural carbohydrate-based chitosan/pectin (CS/Pec) hydrogel adsorbent to remove Pb(II) from aqueous solutions. The physical CS/Pec hydrogel was prepared by blending aqueous CS and Pec solutions at 65 °C, preventing the use of toxic chemistries (crosslinking agents). The thermosensitive CS/Pec hydrogel was quickly created by cooling CS/Pec blend at room temperature. The used strategy created stable CS/Pec hydrogel against disintegration and water dissolution. The as-prepared hydrogel was characterized by infrared spectroscopy (FTIR) and thermogravimetric analysis (TGA). The adsorbent had 1.688 mmol -COO- for each gram. These ionized sites bind Pb(II) ions, promoting their adsorption. The adsorption kinetic and equilibrium studies indicated that the Elovich and pseudo-second-order models adjusted well to the experimental data, respectively. The maximum removal capacities (qm) predicted by the Langmuir and Sips isotherms achieved 108.2 and 97.55 mg/g at 0.83 g/L adsorbent dosage (pH 4.0). The hydrogel/Pb(II) pair was characterized by scanning electron microscopy (SEM), X-ray dispersive energy (EDS), and differential scanning calorimetry (DSC). The chemisorption seems to play an essential role in the Pb(II) adsorption. Therefore, the adsorbent was not recovered, showing low potential for reusability.


Assuntos
Quitosana/química , Chumbo/química , Pectinas/química , Poluentes Químicos da Água/química , Purificação da Água
18.
Carbohydr Res ; 499: 108194, 2021 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-33234262

RESUMO

Strategies for incorporating water-insoluble photosensitisers (PS) in drug delivery systems have been extensively studied. In this work, we evaluate the formation, characterisation, drug sorption studies, and cytotoxicity of chitosan (CHT)/chondroitin sulphate (CS) polyelectrolyte complexes (PECs) coated with polystyrene-block-poly(acrylic acid) (PS-b-PAA) nanoparticles (NPs) loaded with chloroaluminum phthalocyanine (AlClPc). The PECs were characterised by infrared spectroscopy (FTIR), differential scanning calorimetric (DSC), X-ray diffraction (XRD), and scanning electron microscopy (SEM). The PS-b-PAA NPs on the PEC surface was confirmed by scanning electron microscopy (SEM). Additionally, optical images distinguished the PEC structures containing PS-b-PAA or PS-b-PAA/AlClPc from the unloaded PEC. Kinetic and equilibrium studies investigate the sorption capacity of the PEC/PS-b-PAA toward AlClPc. The encapsulation efficiency reached 95% at 190 µg mL-1 AlClPc after only 15 min. The Brunauer-Emmett-Teller (BET) isotherm and pseudo-second-order kinetic fitted well to the experimental data. The PS-b-PAA NPs on the PEC surfaces increase the AlClPc bioavailability and the PEC structure stabilizes the PS-b-PAA/AlClPc nanostructures. The materials were cytocompatible upon healthy VERO (kidney epithelial cells), and cytotoxic against colorectal cancerous cells (HT-29 cells). For the first time, we associate PS-b-PAA/AlClPc with a hydrophilic and cytocompatible polysaccharide matrix. We suggest the use of these materials in strategies to treat cancer by using photodynamic therapy.


Assuntos
Antineoplásicos/farmacologia , Materiais Biocompatíveis/farmacologia , Neoplasias Colorretais/tratamento farmacológico , Polieletrólitos/farmacologia , Polissacarídeos/farmacologia , Antineoplásicos/síntese química , Antineoplásicos/química , Materiais Biocompatíveis/síntese química , Materiais Biocompatíveis/química , Configuração de Carboidratos , Linhagem Celular , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Neoplasias Colorretais/patologia , Ensaios de Seleção de Medicamentos Antitumorais , Humanos , Tamanho da Partícula , Polieletrólitos/síntese química , Polieletrólitos/química , Polissacarídeos/síntese química , Polissacarídeos/química
19.
Int J Biol Macromol ; 183: 727-742, 2021 Jul 31.
Artigo em Inglês | MEDLINE | ID: mdl-33915214

RESUMO

In this work free-standing gels formed from gellan gum (GG) by solvent evaporation are coated with polysaccharide-based polyelectrolyte multilayers, using the layer-by-layer approach. We show that PEMs composed of iota-carrageenan (CAR) and three different natural polycationic polymers have composition-dependent antimicrobial properties, and support mammalian cell growth. Cationic polymers (chitosan (CHT), N,N,N-trimethyl chitosan (TMC), and an amino-functionalized tannin derivative (TN)) are individually assembled with the anionic iota-carrageenan (CAR) at pH 5.0. PEMs (15-layers) are alternately deposited on the GG film. The GG film and coated GG films with PEMs are characterized by infrared spectroscopy with attenuated total reflectance (FTIR-ATR), X-ray photoelectron spectroscopy (XPS), atomic force microscopy (AFM), and water contact angle (WCA) measurements. The TN/CAR coating provides a hydrophobic (WCA = 127°) and rough surface (Rq = 243 ± 48 nm), and the TMC/CAR coating provides a hydrophilic surface (WCA = 78°) with the lowest roughness (Rq = 97 ± 12 nm). Polymer coatings promote stability and durability of the GG film, and introduce antimicrobial properties against Gram-negative (Salmonella enteritidis) and Gram-positive (Staphylococcus aureus) bacteria. The films are also cytocompatible. Therefore, they have properties that can be further developed as wound dressings and food packaging.


Assuntos
Anti-Infecciosos/síntese química , Materiais Biocompatíveis/síntese química , Carragenina/química , Quitosana/química , Polissacarídeos Bacterianos/química , Anti-Infecciosos/química , Anti-Infecciosos/farmacologia , Materiais Biocompatíveis/química , Materiais Biocompatíveis/farmacologia , Embalagem de Alimentos , Bactérias Gram-Negativas/efeitos dos fármacos , Bactérias Gram-Positivas/efeitos dos fármacos , Interações Hidrofóbicas e Hidrofílicas , Microscopia de Força Atômica , Espectroscopia Fotoeletrônica , Polieletrólitos , Cicatrização
20.
J Biomed Mater Res A ; 108(4): 992-1005, 2020 04.
Artigo em Inglês | MEDLINE | ID: mdl-31909867

RESUMO

Biomaterial-associated thrombus formation and bacterial infection remain major challenges for blood-contacting devices. For decades, titanium-based implants have been largely used for different medical applications. However, titanium can neither suppress blood coagulation, nor prevent bacterial infections. To address these challenges, tanfloc/heparin polyelectrolyte multilayers on titania nanotubes array surfaces (NT) were developed. The surfaces were characterized by scanning electron microscopy (SEM), X-ray photoelectron spectroscopy (XPS), and water contact angle measurements. To evaluate the hemocompatibility of the surfaces, fibrinogen adsorption, Factor XII activation, and platelet adhesion and activation were analyzed. The antibacterial activity was investigated against Gram-negative P. aeruginosa and Gram-positive S. aureus. Bacterial adhesion and morphology, as well as biofilm formation, were analyzed using fluorescence microscopy and SEM. The anti-thrombogenic properties of the surfaces were demonstrated by significant decreases in fibrinogen adsorption, Factor XII activation, and platelet adhesion and activation. Modifying NT with tanfloc/heparin also reduces the adhesion and proliferation of P. aeruginosa and S. aureus bacteria after 24 hr of incubation, with no biofilm formation. The modified NT surfaces with tanfloc/heparin polyelectrolyte multilayers are a promising biomaterial for use on implant surfaces because of their enhanced blood biocompatibility and antibacterial properties.


Assuntos
Antibacterianos/farmacologia , Materiais Biocompatíveis/farmacologia , Heparina/farmacologia , Nanotubos/química , Polieletrólitos/farmacologia , Titânio/farmacologia , Adsorção , Fator XII/metabolismo , Fibrinogênio/metabolismo , Humanos , Testes de Sensibilidade Microbiana , Nanotubos/ultraestrutura , Nitrogênio/química , Espectroscopia Fotoeletrônica , Adesividade Plaquetária/efeitos dos fármacos , Pseudomonas aeruginosa/efeitos dos fármacos , Pseudomonas aeruginosa/ultraestrutura , Staphylococcus aureus/efeitos dos fármacos , Staphylococcus aureus/ultraestrutura , Propriedades de Superfície , Água/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA