Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Drug Deliv Transl Res ; 13(5): 1272-1287, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-36209312

RESUMO

Iontophoresis has been vastly explored to improve drug permeation, mainly for transdermal delivery. Despite the skin's electrical resistance and barrier properties, it has a relatively high aqueous content and is permeable to many drugs. In contrast, nails and teeth are accessible structures for target drug delivery but possess low water content compared to the skin and impose significant barriers to drug permeation. Common diseases of these sites, such as nail onychomycosis and endodontic microbial infections that reach inaccessible regions for mechanical removal, often depend on time-consuming and ineffective treatments relying on drug's passive permeation. Iontophoresis application in nail and teeth structures may be a safe and effective way to improve drug transport across the nail and drug distribution through dental structures, making treatments more effective and comfortable for patients. Here, we provide an overview of iontophoresis applications in these "hard tissues," considering specificities such as their high electrical resistivity. Iontophoresis presents a promising option to enhance drug permeation through the nail and dental tissues, and further developments in these areas could lead to widespread clinical use.


Assuntos
Antifúngicos , Unhas , Humanos , Terbinafina/farmacologia , Antifúngicos/química , Iontoforese , Naftalenos/química , Permeabilidade , Sistemas de Liberação de Medicamentos
2.
Carbohydr Polym ; 302: 120420, 2023 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-36604082

RESUMO

This work aimed to evaluate poly(pseudo)rotaxanes (PPRs) potential for vaginal antifungal delivery. For this, PPRs containing terbinafine (TB) 2 % were obtained using two small surfactants, Kolliphor® RH40 and Gelucire® 48/16, and different α-cyclodextrin (α-CD) concentrations (5 and 10 %). PPRs were characterized by their physicochemical characteristics, irritation, and mucoadhesion capabilities. Formulations' performance was assessed in a vertical penetration model, which uses ex vivo entire porcine vagina. Conventional penetration experiments with excised vaginal tissue were performed as a control. Results showed all formulations were non-irritant according to the HET-CAM test. Furthermore, PPRs with 10 % αCD showed superior mucoadhesion (p < 0.05). Conventional horizontal penetration studies could not differentiate formulations (p > 0.05). However, PPRs with 10 % αCD presented a better performance in vertical ex vivo studies, achieving higher drug penetration into the vaginal mucosa (p < 0.05), which is probably related to the formulation's prolonged residence time. In addition, the antifungal activity of the formulations was maintained against Candida albicans and C. glabrata cultures. More importantly, the formulation's viscosity and drug delivery control had no negative impact on the antifungal activity. In conclusion, the best performance in a more realistic model evidenced the remarkable potential of PPRs for vaginal drug delivery.


Assuntos
Rotaxanos , alfa-Ciclodextrinas , Feminino , Animais , Suínos , Antifúngicos/química , Rotaxanos/química , Vagina , Candida albicans , Mucosa
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA