Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Exp Parasitol ; 222: 108064, 2021 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-33421382

RESUMO

Experimental studies for understanding the relationship between Plasmodium vivax and its vector hosts are difficult, because of to the lack of a long-term, in vitro continuous culture system unavailability of infected blood samples, seasonality of the disease, and the concentration of most cases in remote areas. This study evaluates the duration of the infectivity of P. vivax to Anopheles aquasalis after collecting blood from malaria-infected patients. Blood was collected from patients and stored at 4 °C and 37 °C. Every day, for 4 days, the blood was fed to An. aquasalis adult females, and a Giemsa-stained thick blood smear was mounted to account for sexual (gametocytes) and asexual (trophozoites and schizonts) stages and calculate parasitemia. Oocysts in the midgut of the mosquitoes were counted on the seventh day after feeding. Kruskal-Wallis test was used to compare the mean number of oocysts (MO) and the parasite density (PD) in each storage condition and post-infection time-points. The Mann-Whitney test was used to compare the number of oocysts for each day between temperatures. The results show that P. vivax stored at 4 °C and at 37 °C has its infectivity to An. aquasalis preserved for 2 days and 3 days, respectively. Infection rate (IR), PD and MO were higher on the day of blood collection and decreased gradually over time. The parasite density (number of parasites/µL) diminished faster at 4 °C than at 37 °C. In this study, a preservation protocol is shown for long-lasting infectivity of P. vivax in a blood sample taken from malaria-infected patients. These results show that infectivity of P. vivax stored at 4 °C and at 37 °C to An. aquasalis persist until 3 days after blood collection, but parasite density, infection rate, and mean of oocysts decreased 24h after blood collection. Since the malaria cases are increasingly far from the urban areas these results indicate that is possible, losing some infectivity, to realize experimental infections several dozen hours after the blood collection. However, it is necessary to improve the procedures for preserving P. vivax gametocytes for mosquito infection in the laboratory.


Assuntos
Anopheles/parasitologia , Malária Vivax/parasitologia , Mosquitos Vetores/parasitologia , Plasmodium vivax/fisiologia , Adulto , Idoso , Animais , Brasil , Feminino , Humanos , Malária Vivax/sangue , Malária Vivax/transmissão , Masculino , Pessoa de Meia-Idade , Plasmodium vivax/patogenicidade , População Rural , Temperatura , Fatores de Tempo , Adulto Jovem
2.
Antimicrob Agents Chemother ; 59(10): 6638-41, 2015 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-26239989

RESUMO

Significant progress toward the control of malaria has been achieved, especially regarding Plasmodium falciparum infections. However, the unique biology of Plasmodium vivax hampers current control strategies. The early appearance of P. vivax gametocytes in the peripheral blood and the impossibility of culturing this parasite are major drawbacks. Using blood samples from 40 P. vivax-infected patients, we describe here a methodology to purify viable gametocytes and further infect anophelines. This method opens new avenues to validate transmission-blocking strategies.


Assuntos
Plasmodium vivax/isolamento & purificação , Humanos , Malária Falciparum/parasitologia , Malária Vivax/parasitologia , Plasmodium vivax/fisiologia
3.
Sci Rep ; 12(1): 19442, 2022 11 14.
Artigo em Inglês | MEDLINE | ID: mdl-36376491

RESUMO

Anopheles darlingi is the main malarial vector in the Brazilian Amazon region. An. nuneztovari s.l., An. triannulatus s.l., An. evansae, and An. benarrochi s.l. do not have a defined role as malarial vectors, although they have been found to be naturally infected with Plasmodium vivax, and some develop oocysts. In this study, we evaluated the importance of low numbers of oocysts in sporozoite salivary gland invasion and transmission. Field-collected mosquitoes were experimentally infected with P. vivax. The infection rates and oocyst and sporozoite infection intensities were evaluated and compared with those of An. aquasalis. We found the highest number of oocysts in An. darlingi (mean = 39.47) and the lowest in An. nuneztovari s.l. (mean = 2). The highest number of sporozoites was observed in An. darlingi (mean = 610) and lowest in An. benarrochi s.l. (mean = 30). Plasmodium vivax DNA was detected in the saliva of all mosquito species after a blood meal. Regardless of the number of oocysts, all species transmitted sporozoites during blood meals. Considering the abundance of these mosquitoes and transmission of sporozoites, it is logical to assume that An. nuneztovari s.l. and An. triannulatus s.l. are involved in the transmission of P. vivax.


Assuntos
Anopheles , Malária , Plasmodium vivax , Animais , Malária Vivax , Refeições , Mosquitos Vetores , Oocistos , Esporozoítos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA