Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
1.
Clin Genet ; 105(6): 639-654, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38374498

RESUMO

The application of genomic technologies has led to unraveling of the complex genetic landscape of disorders of epilepsy, gaining insights into their underlying disease mechanisms, aiding precision medicine, and providing informed genetic counseling. We herein present the phenotypic and genotypic insights from 142 Indian families with epilepsy with or without comorbidities. Based on the electroclinical findings, epilepsy syndrome diagnosis could be made in 44% (63/142) of the families adopting the latest proposal for the classification by the ILAE task force (2022). Of these, 95% (60/63) of the families exhibited syndromes with developmental epileptic encephalopathy or progressive neurological deterioration. A definitive molecular diagnosis was achieved in 74 of 142 (52%) families. Infantile-onset epilepsy was noted in 81% of these families (61/74). Fifty-five monogenic, four chromosomal, and one imprinting disorder were identified in 74 families. The genetic variants included 65 (96%) single-nucleotide variants/small insertion-deletions, 1 (2%) copy-number variant, and 1 (2%) triplet-repeat expansion in 53 epilepsy-associated genes causing monogenic disorders. Of these, 35 (52%) variants were novel. Therapeutic implications were noted in 51% of families (38/74) with definitive diagnosis. Forty-one out of 66 families with monogenic disorders exhibited autosomal recessive and inherited autosomal dominant disorders with high risk of recurrence.


Assuntos
Epilepsia , Aconselhamento Genético , Fenótipo , Humanos , Epilepsia/genética , Epilepsia/epidemiologia , Epilepsia/diagnóstico , Índia/epidemiologia , Masculino , Feminino , Criança , Pré-Escolar , Lactente , Predisposição Genética para Doença , Linhagem , Idade de Início , Estudos de Associação Genética , Adolescente , Genótipo , Variações do Número de Cópias de DNA/genética
2.
Am J Med Genet A ; 194(5): e63529, 2024 05.
Artigo em Inglês | MEDLINE | ID: mdl-38179855

RESUMO

Nucleoporins (NUPs) are a group of transporter proteins that maintain homeostasis of nucleocytoplasmic transport of proteins and ribonucleic acids under physiological conditions. Biallelic pathogenic variants in NUP214 are known to cause susceptibility to acute infection-induced encephalopathy-9 (IIAE9, MIM#618426), which is characterized by severe and early-onset febrile encephalopathy causing neuroregression, developmental delay, microcephaly, epilepsy, ataxia, brain atrophy, and early death. NUP214-related IIAE9 has been reported in eight individuals from four distinct families till date. We identified a novel in-frame deletion, c.202_204del p.(Leu68del), in NUP214 by exome sequencing in a 20-year-old male with episodic ataxia, seizures, and encephalopathy, precipitated by febrile illness. Neuroimaging revealed progressive cerebellar atrophy. In silico predictions show a change in the protein conformation that may alter the downstream protein interactions with the NUP214 N-terminal region, probably impacting the mRNA export. We report this novel deletion in NUP214 as a cause for a late onset and less severe form of IIAE9.


Assuntos
Encefalopatia Aguda Febril , Encefalopatias , Epilepsia , Microcefalia , Masculino , Humanos , Adulto Jovem , Adulto , Encefalopatias/diagnóstico , Encefalopatias/genética , Epilepsia/genética , Microcefalia/genética , Atrofia , Complexo de Proteínas Formadoras de Poros Nucleares/genética
3.
Am J Med Genet A ; 191(8): 2175-2180, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37337996

RESUMO

Heterozygous disease-causing variants in BCL11B are the basis of a rare neurodevelopmental syndrome with craniofacial and immunological involvement. Isolated craniosynostosis, without systemic or immunological findings, has been reported in one of the 17 individuals reported with this disorder till date. We report three additional individuals harboring de novo heterozygous frameshift variants, all lying in the exon 4 of BCL11B. All three individuals presented with the common findings of this disorder i.e. developmental delay, recurrent infections with immunologic abnormalities and facial dysmorphism. Notably, craniosynostosis of variable degree was seen in all three individuals. We, thus add to the evolving genotypes and phenotypes of BCL11B-related BAFopathy and also review the clinical, genomic spectrum along with the underlying disease mechanisms of this disorder.


Assuntos
Craniossinostoses , Deficiência Intelectual , Transtornos do Neurodesenvolvimento , Humanos , Fatores de Transcrição/genética , Craniossinostoses/diagnóstico , Craniossinostoses/genética , Mutação da Fase de Leitura , Fenótipo , Proteínas Supressoras de Tumor/genética , Deficiência Intelectual/genética , Transtornos do Neurodesenvolvimento/genética , Proteínas Repressoras/genética
4.
Clin Dysmorphol ; 33(4): 160-166, 2024 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-39140381

RESUMO

INTRODUCTION: Biallelic variants in thiamine pyrophosphokinase 1 ( TPK1 ) are known to cause thiamine metabolism dysfunction syndrome 5 (THMD5). This disorder is characterized by neuroregression, ataxia and dystonia with basal ganglia abnormalities on neuroimaging. To date, 27 families have been reported with THMD5 due to variants in TPK1 . METHODS: We ascertained three individuals from three unrelated families. Singleton exome sequencing was performed on all three individuals, followed by in silico mutagenesis of the mutant TPK protein. Additionally, we reviewed the genotypic and phenotypic information of 27 previously reported individuals with THMD5. RESULTS: Singleton exome sequencing revealed a novel homozygous variant c.620A>T p.(Asp207Val) in TPK1 (NM_022445.4) in all three individuals. In silico mutagenesis of the mutant protein revealed a decrease in protein stability and altered interactions with its neighboring residues compared to the wild-type protein. Thus, based on strikingly similar clinical and radiological findings compared to the previously reported individuals and with the support of in silico mutagenesis findings, the above-mentioned variant appears to be the probable cause for the condition observed in the affected individuals in this study. CONCLUSION: We report a novel homozygous variant in TPK1 , which appears to be recurrent among the Indian population.


Assuntos
Homozigoto , Linhagem , Tiamina Pirofosfoquinase , Humanos , Sequenciamento do Exoma , Estudos de Associação Genética , Predisposição Genética para Doença , Mutação , Fenótipo , Tiamina Pirofosfoquinase/genética , Tiamina/metabolismo
5.
Eur J Hum Genet ; 32(10): 1291-1298, 2024 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-38114583

RESUMO

The contribution of de novo variants as a cause of intellectual disability (ID) is well established in several cohorts reported from the developed world. However, the genetic landscape as well as the appropriate testing strategies for identification of de novo variants of these disorders remain largely unknown in low-and middle-income countries like India. In this study, we delineate the clinical and genotypic spectrum of 54 families (55 individuals) with syndromic ID harboring rare de novo variants. We also emphasize on the effectiveness of singleton exome sequencing as a valuable tool for diagnosing these disorders in resource limited settings. Overall, 46 distinct disorders were identified encompassing 46 genes with 51 single-nucleotide variants and/or indels and two copy-number variants. Pathogenic variants were identified in CREBBP, TSC2, KMT2D, MECP2, IDS, NIPBL, NSD1, RIT1, SOX10, BRWD3, FOXG1, BCL11A, KDM6B, KDM5C, SETD5, QRICH1, DCX, SMARCD1, ASXL1, ASXL3, AKT3, FBN2, TCF12, WASF1, BRAF, SMARCA4, SMARCA2, TUBG1, KMT2A, CTNNB1, DLG4, MEIS2, GATAD2B, FBXW7, ANKRD11, ARID1B, DYNC1H1, HIVEP2, NEXMIF, ZBTB18, SETD1B, DYRK1A, SRCAP, CASK, L1CAM, and KRAS. Twenty-four of these monogenic disorders have not been previously reported in the Indian population. Notably, 39 out of 53 (74%) disease-causing variants are novel. These variants were identified in the genes mainly encoding transcriptional and chromatin regulators, serine threonine kinases, lysosomal enzymes, molecular motors, synaptic proteins, neuronal migration machinery, adhesion molecules, structural proteins and signaling molecules.


Assuntos
Deficiência Intelectual , Humanos , Deficiência Intelectual/genética , Deficiência Intelectual/diagnóstico , Deficiência Intelectual/patologia , Índia , Feminino , Masculino , Criança , Adolescente , Pré-Escolar , Adulto , Sequenciamento do Exoma , Síndrome , Variações do Número de Cópias de DNA , Estudos de Coortes , Mutação
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA