Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Sci Rep ; 13(1): 13077, 2023 08 11.
Artigo em Inglês | MEDLINE | ID: mdl-37567970

RESUMO

Two types of exploratory touch including active sliding and passive sliding are usually encountered in the daily life. The friction behavior of the human finger against the surface of objects is important in tactile perception. The neural mechanisms correlating to tribological behavior are not fully understood. This study investigated the tactile response of active and passive finger friction characterized with functional near-infrared spectroscopy (fNIRS). The friction test and fNIRS test were performed simultaneously using the tactile stimulus of polytetrafluoroethylene (PTFE) specimens. Results showed that the sliding modes did not obviously influence the friction property of skin. While three cortex regions were activated in the prefrontal cortex (PFC), showing a higher activation level of passive sliding. This revealed that the tribological performance was not a simple parameter to affect tactile perception, and the difference in cortical hemodynamic activity of active and passive touch was also recognised. The movement-related blood flow changes revealed the role of PFC in integrating tactile sensation although there was no estimation task on roughness perception.


Assuntos
Percepção do Tato , Tato , Humanos , Tato/fisiologia , Fricção , Percepção do Tato/fisiologia , Pele , Dedos/fisiologia , Neuroimagem
2.
J R Soc Interface ; 19(188): 20210783, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-35317652

RESUMO

Human beings often explore and perceive the characteristics of objects by touching with their fingers. During this process, the contact pressure and shear stress acting on the skin also modulate the tactile sensation. The external environment is an important factor that influences tactile perception as well as the finger friction characteristics. The purpose of this study was to investigate the effects of fluid environments, such as air, deionized water (DW) and thickened water (TW), on perceived roughness and relevant friction behaviour during finger movement. Two studies were performed to analyse the effect of fluid environment as well as the influence of lubricant viscosity on finger tactile friction behaviour. Participants conducted perception and sliding friction tests with their index finger in air and submerged in DW and TW, respectively. Perception tests were performed using a pairwise comparison, scoring the perceived roughness difference between a reference sample and the test sample. The statistical analysis showed that there was no significant difference in the roughness perception between air and DW, while the sensitivity of perception reduced with increasing lubricant viscosity. An approximate calculation of the film thickness was combined with classical lubrication theory to investigate the relationship between perception and friction. In TW, the thick film formed between the finger and the polytetrafluoroethylene plate changed the contact of the asperities with the skin, thus changing the subjective judgement and friction.


Assuntos
Percepção do Tato , Dedos , Fricção , Humanos , Pele , Tato
3.
Sci Rep ; 11(1): 16248, 2021 08 10.
Artigo em Inglês | MEDLINE | ID: mdl-34376802

RESUMO

The use of close-fitting PPE is essential to prevent exposure to dispersed airborne matter, including the COVID-19 virus. The current pandemic has increased pressure on healthcare systems around the world, leading to medical professionals using high-grade PPE for prolonged durations, resulting in device-induced skin injuries. This study focuses on computationally improving the interaction between skin and PPE to reduce the likelihood of discomfort and tissue damage. A finite element model is developed to simulate the movement of PPE against the face during day-to-day tasks. Due to limited available data on skin characteristics and how these vary interpersonally between sexes, races and ages, the main objective of this study was to establish the effects and trends that mask modifications have on the resulting subsurface strain energy density distribution in the skin. These modifications include the material, geometric and interfacial properties. Overall, the results show that skin injury can be reduced by using softer mask materials, whilst friction against the skin should be minimised, e.g. through use of micro-textures, humidity control and topical creams. Furthermore, the contact area between the mask and skin should be maximised, whilst the use of soft materials with incompressible behaviour (e.g. many elastomers) should be avoided.


Assuntos
Simulação por Computador , Máscaras/efeitos adversos , Dermatopatias/prevenção & controle , Face/anatomia & histologia , Análise de Elementos Finitos , Fricção , Humanos , Máscaras/normas , Dermatopatias/etiologia , Fenômenos Fisiológicos da Pele , Design Centrado no Usuário
4.
PLoS One ; 15(9): e0239363, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32970710

RESUMO

BACKGROUND: Healthcare workers around the world are experiencing skin injury due to the extended use of personal protective equipment (PPE) during the COVID-19 pandemic. These injuries are the result of high shear stresses acting on the skin, caused by friction with the PPE. This study aims to provide a practical lubricating solution for frontline medical staff working a 4+ hours shift wearing PPE. METHODS: A literature review into skin friction and skin lubrication was conducted to identify products and substances that can reduce friction. We evaluated the lubricating performance of commercially available products in vivo using a custom-built tribometer. FINDINGS: Most lubricants provide a strong initial friction reduction, but only few products provide lubrication that lasts for four hours. The response of skin to friction is a complex interplay between the lubricating properties and durability of the film deposited on the surface and the response of skin to the lubricating substance, which include epidermal absorption, occlusion, and water retention. INTERPRETATION: Talcum powder, a petrolatum-lanolin mixture, and a coconut oil-cocoa butter-beeswax mixture showed excellent long-lasting low friction. Moisturising the skin results in excessive friction, and the use of products that are aimed at 'moisturising without leaving a non-greasy feel' should be prevented. Most investigated dressings also demonstrate excellent performance.


Assuntos
Infecções por Coronavirus/complicações , Lubrificantes/uso terapêutico , Equipamento de Proteção Individual/efeitos adversos , Pneumonia Viral/complicações , Pele/lesões , Adulto , Betacoronavirus , Fenômenos Biomecânicos , COVID-19 , Fricção , Humanos , Masculino , Corpo Clínico , Pandemias , SARS-CoV-2
5.
PLoS One ; 15(1): e0227064, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31899778

RESUMO

When immobile or neuropathic patients are supported by beds or chairs, their soft tissues undergo deformations that can cause pressure ulcers. Current support surfaces that redistribute under-body pressures at vulnerable body sites have not succeeded in reducing pressure ulcer prevalence. Here we show that adding a supporting lateral pressure can counter-act the deformations induced by under-body pressure, and that this 'pressure equalisation' approach is a more effective way to reduce ulcer-inducing deformations than current approaches based on redistributing under-body pressure. A finite element model of the seated pelvis predicts that applying a lateral pressure to the soft tissue reduces peak von Mises stress in the deep tissue by a factor of 2.4 relative to a standard cushion (from 113 kPa to 47 kPa)-a greater effect than that achieved by using a more conformable cushion, which reduced von Mises stress to 75 kPa. Combining both a conformable cushion and lateral pressure reduced peak von Mises stresses to 25 kPa. The ratio of peak lateral pressure to peak under-body pressure was shown to regulate deep tissue stress better than under-body pressure alone. By optimising the magnitude and position of lateral pressure, tissue deformations can be reduced to that induced when suspended in a fluid. Our results explain the lack of efficacy in current support surfaces and suggest a new approach to designing and evaluating support surfaces: ensuring sufficient lateral pressure is applied to counter-act under-body pressure.


Assuntos
Desenho de Equipamento , Úlcera por Pressão/prevenção & controle , Terapia de Tecidos Moles/métodos , Fenômenos Biomecânicos , Nádegas , Humanos , Pelve , Pressão
6.
Sci Adv ; 5(10): eaay0244, 2019 10.
Artigo em Inglês | MEDLINE | ID: mdl-31633031

RESUMO

Plantar skin on the soles of the feet has a distinct morphology and composition that is thought to enhance its tolerance to mechanical loads, although the individual contributions of morphology and composition have never been quantified. Here, we combine multiscale mechanical testing and computational models of load bearing to quantify the mechanical environment of both plantar and nonplantar skin under load. We find that morphology and composition play distinct and complementary roles in plantar skin's load tolerance. More specifically, the thick stratum corneum provides protection from stress-based injuries such as skin tears and blisters, while epidermal and dermal compositions provide protection from deformation-based injuries such as pressure ulcers. This work provides insights into the roles of skin morphology and composition more generally and will inform the design of engineered skin substitutes as well as the etiology of skin injury.


Assuntos
Pele/patologia , Estresse Mecânico , Colágeno Tipo I/química , Colágeno Tipo I/metabolismo , Epiderme/patologia , Humanos , Microscopia de Força Atômica , Pele/lesões , Pele/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA