Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 36
Filtrar
1.
Vox Sang ; 118(7): 582-586, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37191237

RESUMO

BACKGROUND: Transfusion-transmitted bacterial infections (TTBIs) in Japan have been largely prevented due to a short shelf life of 3.5 days after blood collection for platelet concentrate (PC) and washed PCs (WPCs; PC in which 95% plasma is replaced by platelet additive solution). CASE PRESENTATION: Case 1: In January 2018, a woman in her 50s with aplastic anaemia who received WPC transfusion and developed a fever the next day and Streptococcus dysgalactiae subspecies equisimilis (SDSE) was detected in the residual WPC. Case 2: In May 2018, a man in his 60s with a haematologic malignancy who received PC transfusion and developed chills during the transfusion. SDSE was detected in the patient's blood and residual PC. The contaminated platelet products were both manufactured from blood donated by the same donor. The multi-locus sequencing typing revealed that SDSE detected in case 1 was identical to that from case 2; however, whole blood subsequently obtained from the donor was culture negative. CONCLUSION: WPC and PC produced from two blood donated 106 days apart by the same donor were contaminated with SDSE of the same strain and both caused TTBIs. Safety measures should be considered regarding blood collection from a donor with a history of bacterial contamination.


Assuntos
Doação de Sangue , Reação Transfusional , Feminino , Humanos , Masculino , Bactérias , Transfusão de Sangue , Streptococcus , Pessoa de Meia-Idade
2.
Ann Bot ; 132(6): 1159-1174, 2023 12 05.
Artigo em Inglês | MEDLINE | ID: mdl-37490684

RESUMO

BACKGROUND AND AIMS: During the analysis of plant male meiocytes coming from destroyed meiocyte columns (united multicellular structures formed by male meiocytes in each anther locule), a considerable amount of information becomes unavailable. Therefore, in this study intact meiocyte columns were studied by volume microscopy in wild-type rye for the most relevant presentation of 3-D structure of rye meiocytes throughout meiosis. METHODS: We used two types of volume light microscopy: confocal laser scanning microscopy and non-confocal bright-field scanning microscopy combined with alcohol and aldehyde fixation, as well as serial block-face scanning electron microscopy. KEY RESULTS: Unusual structures, called nuclear protuberances, were detected. At certain meiotic stages, nuclei formed protuberances that crossed the cell wall through intercellular channels and extended into the cytoplasm of neighbouring cells, while all other aspects of cell structure appeared to be normal. This phenomenon of intercellular nuclear migration (INM) was detected in most meiocytes at leptotene/zygotene. No cases of micronucleus formation or appearance of binucleated meiocytes were noticed. There were instances of direct contact between two nuclei during INM. No influence of fixation or of mechanical impact on the induction of INM was detected. CONCLUSIONS: Intercellular nuclear migration in rye may be a programmed process (a normal part of rye male meiosis) or a tricky artefact that cannot be avoided in any way no matter which approach to meiocyte imaging is used. In both cases, INM seems to be an obligatory phenomenon that has previously been hidden by limitations of common microscopic techniques and by 2-D perception of plant male meiocytes. Intercellular nuclear migration cannot be ignored in any studies involving manipulations of rye anthers.


Assuntos
Meiose , Secale , Plantas , Núcleo Celular , Microscopia Confocal
3.
Transfusion ; 62(3): 621-632, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-35045189

RESUMO

BACKGROUND: Bacterial contamination in platelet concentrates (PCs) is a major problem in transfusion medicine. Contamination with Staphylococcus aureus is occasionally missed, even with cultural screening. STUDY DESIGN AND METHODS: Donors implicated in S. aureus-contaminated PC were followed up. Skin and nasal swab specimens from six donors and S. aureus isolated from PCs related to these donors were subjected to multilocus sequence typing (MLST) and pulsed-field gel electrophoresis (PFGE) to determine the identity of bacteria. To evaluate the validity of the screening method using BacT/ALERT 3D, we spiked S. aureus and three other bacterial species as comparisons into PCs and investigated their growth pattern. RESULTS: S. aureus was isolated from all nasal specimens and from the arm skin specimens of three donors with atopic dermatitis. In all cases, the S. aureus strains isolated from the PC and those from the nasal and skin specimens of the same donor showed concordant results using MLST and PFGE. In the spiking study, S. aureus showed irregular detectability over 24 to 48 h post-spike periods, whereas the three other bacterial species were detected in all culture bottles after a 24-h post-spike period. DISCUSSION: The strain identity of S. aureus between donor and PC suggests that the contaminants were derived from those colonized in the donor. Furthermore, S. aureus yielded false-negative results using BacT/ALERT 3D.


Assuntos
Dermatopatias , Infecções Estafilocócicas , Bactérias , Doadores de Sangue , Plaquetas/microbiologia , Humanos , Tipagem de Sequências Multilocus , Infecções Estafilocócicas/diagnóstico , Staphylococcus aureus
4.
J Pharmacol Sci ; 147(1): 138-142, 2021 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-34294365

RESUMO

We previously generated an ischemic stroke in a zebrafish model using N2 gas perfusion; however, this model was an unsuitable drug screening system due to low throughput. In this study, we examined a zebrafish ischemic stroke model using an oxygen absorber to assess drug effects. Hypoxic exposure more than 2 h using the oxygen absorber significantly induced cell death in the brain and damage to the neuronal cells. To confirm the utility of the ischemic model induced by the oxygen absorber, we treated zebrafish with neuroprotective agents. MK-801, an N-methyl-d-aspartate (NMDA) receptor antagonist, significantly suppressed cell death in the brain, and edaravone, a free radical scavenger, significantly reduced the number of dead cells. These results suggest that the activation of NMDA receptors and the production of reactive oxygen species induce neuronal cell damage in accordance with previous mammalian reports. We demonstrate the suitability of an ischemic stroke model in zebrafish larvae using the oxygen absorber, enabling a high throughput drug screening.


Assuntos
Isquemia Encefálica/tratamento farmacológico , Maleato de Dizocilpina/uso terapêutico , Avaliação Pré-Clínica de Medicamentos/métodos , Edaravone/uso terapêutico , Sequestradores de Radicais Livres/uso terapêutico , Larva , Receptores de N-Metil-D-Aspartato/antagonistas & inibidores , Peixe-Zebra , Animais , Encéfalo/patologia , Isquemia Encefálica/etiologia , Isquemia Encefálica/patologia , Morte Celular/efeitos dos fármacos , Modelos Animais de Doenças , Maleato de Dizocilpina/farmacologia , Edaravone/farmacologia , Sequestradores de Radicais Livres/farmacologia , Gases , Hipóxia/complicações , Hipóxia/patologia , Neurônios/patologia , Nitrogênio
5.
J Neurosci ; 39(50): 9967-9988, 2019 12 11.
Artigo em Inglês | MEDLINE | ID: mdl-31685650

RESUMO

New neurons, referred to as neuroblasts, are continuously generated in the ventricular-subventricular zone of the brain throughout an animal's life. These neuroblasts are characterized by their unique potential for proliferation, formation of chain-like cell aggregates, and long-distance and high-speed migration through the rostral migratory stream (RMS) toward the olfactory bulb (OB), where they decelerate and differentiate into mature interneurons. The dynamic changes of ultrastructural features in postnatal-born neuroblasts during migration are not yet fully understood. Here we report the presence of a primary cilium, and its ultrastructural morphology and spatiotemporal dynamics, in migrating neuroblasts in the postnatal RMS and OB. The primary cilium was observed in migrating neuroblasts in the postnatal RMS and OB in male and female mice and zebrafish, and a male rhesus monkey. Inhibition of intraflagellar transport molecules in migrating neuroblasts impaired their ciliogenesis and rostral migration toward the OB. Serial section transmission electron microscopy revealed that each migrating neuroblast possesses either a pair of centrioles or a basal body with an immature or mature primary cilium. Using immunohistochemistry, live imaging, and serial block-face scanning electron microscopy, we demonstrate that the localization and orientation of the primary cilium are altered depending on the mitotic state, saltatory migration, and deceleration of neuroblasts. Together, our results highlight a close mutual relationship between spatiotemporal regulation of the primary cilium and efficient chain migration of neuroblasts in the postnatal brain.SIGNIFICANCE STATEMENT Immature neurons (neuroblasts) generated in the postnatal brain have a mitotic potential and migrate in chain-like cell aggregates toward the olfactory bulb. Here we report that migrating neuroblasts possess a tiny cellular protrusion called a primary cilium. Immunohistochemical studies with zebrafish, mouse, and monkey brains suggest that the presence of the primary cilium in migrating neuroblasts is evolutionarily conserved. Ciliogenesis in migrating neuroblasts in the rostral migratory stream is suppressed during mitosis and promoted after cell cycle exit. Moreover, live imaging and 3D electron microscopy revealed that ciliary localization and orientation change during saltatory movement of neuroblasts. Our results reveal highly organized dynamics in maturation and positioning of the primary cilium during neuroblast migration that underlie saltatory movement of postnatal-born neuroblasts.


Assuntos
Movimento Celular/fisiologia , Cílios/ultraestrutura , Ventrículos Laterais/ultraestrutura , Células-Tronco Neurais/ultraestrutura , Neurônios/ultraestrutura , Bulbo Olfatório/ultraestrutura , Animais , Feminino , Macaca mulatta , Masculino , Camundongos , Peixe-Zebra
6.
Transfusion ; 60(7): 1492-1499, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-32436250

RESUMO

BACKGROUND: In 2014, we experienced the first isolation of Lactococcus garvieae from a platelet concentrate (PC). Thereafter, L. garvieae contamination of PCs occurred in two more cases in Japan. It is rare that bacterial contamination with uncommon strains like this species occurs frequently within a short period. Therefore, we performed a detailed analysis of the characteristics of these strains. STUDY DESIGN AND METHODS: Three bacterial strains were identified by biochemical testing and molecular analysis. Genomic diversity was characterized by multilocus sequence typing (MLST). To observe growth kinetics in blood components, PCs were inoculated with the three different strains. RESULTS: All three strains were identified as L. garvieae by molecular analysis. Each strain belonged to a different phylogenetic group according to MLST analysis. In the spiking trial, the three strains demonstrated differences in their final concentrations and changes in appearance of PCs. CONCLUSION: In this study, all three L. garvieae strains were correctly identified by molecular analysis. Since the three strains were collected in different regions of Japan and belonged to different phylogenetic groups according to MLST analysis, it is suggested that L. garvieae have a wide distribution with diversity in Japan. In PCs, the three L. garvieae strains showed clear differences in growth kinetics and changes in appearance of PCs. These differences may have been the primary determinant of whether PC contamination was detected before transfusion. Moreover, L. garvieae represents an emerging foodborne bacterium that can cause transfusion-transmitted bacteremia. Understanding our cases may help prevent bacterial contamination of blood products.


Assuntos
Plaquetas/microbiologia , Lactococcus , Filogenia , Humanos , Lactococcus/classificação , Lactococcus/genética , Lactococcus/crescimento & desenvolvimento , Lactococcus/isolamento & purificação , Tipagem de Sequências Multilocus
7.
Transfusion ; 60(4): 731-738, 2020 04.
Artigo em Inglês | MEDLINE | ID: mdl-32119134

RESUMO

BACKGROUND: Transfusion-transmitted bacterial infections (TTBIs) often have serious consequences for patients. The Japanese Red Cross (JRC) has not implemented culture screening for platelet concentrate (PC), but it has maintained a shelf life of 85 hours for PC. STUDY DESIGN AND METHODS: The JRC collected reports of suspected TTBI and investigated causal relationships using PC samples and patient blood samples. PCs showing apparent abnormalities were retrieved and cultured and analyzed for bacterial growth. RESULTS: The JRC analyzed 86 samples available from 135 transfused PCs with suspected TTBIs that were collected over the past 12 years; 17 (19.8%) were culture-positive. One, 6, and 10 TTBIs developed in patients on Days 1, 2, and 3 after PC collection, respectively. Assuming that PC is transfused on the day of issue, the TTBI risk was fourfold higher on Day 3 than on Day 2, after adjusting the TTBI incidence for the number of PCs issued per day. Compared with the model of issuing all PCs on Day 3, issuing PCs with the current distribution of storage time could have decreased the TTBI incidence by 56%. During the past 8 years, the JRC retrieved 960 PC units because of apparent abnormalities, 2.8% of which were culture-positive. CONCLUSION: The short shelf life of PC is associated with a low incidence of reported TTBIs, more than half of which occurred on Day 3 relative to earlier time points. Visual inspection of PC before transfusion is crucial in detecting bacterially contaminated PC despite its low positive predictive value.


Assuntos
Plaquetas/microbiologia , Reação Transfusional/etiologia , Bactérias/crescimento & desenvolvimento , Infecções Bacterianas/etiologia , Hemocultura , Estabilidade de Medicamentos , Humanos , Incidência , Japão , Sepse/etiologia
8.
Transfusion ; 56(10): 2602-2606, 2016 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-27488229

RESUMO

BACKGROUND: Bacterial contamination of platelet concentrates (PCs) remains a serious problem in transfusion. We have been conducting sterility tests on all PCs rejected by blood centers or hospitals due to abnormal appearances. We recently experienced a case in which discrepant results were obtained between the methods used to identify a bacterial species isolated from a PC, requiring further analyses. STUDY DESIGN AND METHODS: Bacteria were isolated from a PC using the BacT/ALERT system and plate culture. The species was identified using biochemical tests and molecular analysis. Phylogenetic trees were constructed using sequences of the 16S ribosomal RNA (rRNA) and superoxide dismutase (sodA) genes from the bacterial isolate and related species. In addition, the isolate was cultured at temperatures of 10°C and below to determine its growth activity at low temperatures. RESULTS: Biochemical tests determined that the isolate was Streptococcus alactolyticus, whereas molecular analysis determined that it was Lactococcus garvieae. These two species belonged to different clusters on the phylogenetic tree. Similar to L. garvieae, the isolate could grow at 10°C. CONCLUSIONS: We conclude that the isolate was L. garvieae according to molecular identification and its growth characteristic at 10°C. Molecular analysis enabled the identification of this species, which was difficult to classify by biochemical tests. Blood facilities need to be prepared with multiple techniques, including genetic analysis techniques, for identifying contaminating bacterial species. L. garvieae can grow at 10°C and can contaminate both red blood cell concentrates and PCs; thus, this species should be listed as a cryophilic bacterium that could threaten blood safety.


Assuntos
Plaquetas/microbiologia , Lactococcus/genética , Lactococcus/isolamento & purificação , Segurança do Sangue , Genes Bacterianos , Humanos , Japão , Tipagem Molecular/métodos , Filogenia , Transfusão de Plaquetas , RNA Ribossômico 16S/genética , Superóxido Dismutase/genética , Temperatura
9.
EMBO Mol Med ; 16(6): 1228-1253, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38789599

RESUMO

In the injured brain, new neurons produced from endogenous neural stem cells form chains and migrate to injured areas and contribute to the regeneration of lost neurons. However, this endogenous regenerative capacity of the brain has not yet been leveraged for the treatment of brain injury. Here, we show that in healthy brain chains of migrating new neurons maintain unexpectedly large non-adherent areas between neighboring cells, allowing for efficient migration. In instances of brain injury, neuraminidase reduces polysialic acid levels, which negatively regulates adhesion, leading to increased cell-cell adhesion and reduced migration efficiency. The administration of zanamivir, a neuraminidase inhibitor used for influenza treatment, promotes neuronal migration toward damaged regions, fosters neuronal regeneration, and facilitates functional recovery. Together, these findings shed light on a new mechanism governing efficient neuronal migration in the adult brain under physiological conditions, pinpoint the disruption of this mechanism during brain injury, and propose a promising therapeutic avenue for brain injury through drug repositioning.


Assuntos
Encéfalo , Movimento Celular , Neuraminidase , Neurônios , Neuraminidase/metabolismo , Neuraminidase/antagonistas & inibidores , Movimento Celular/efeitos dos fármacos , Animais , Neurônios/efeitos dos fármacos , Neurônios/metabolismo , Camundongos , Zanamivir/farmacologia , Inibidores Enzimáticos/farmacologia , Ácidos Siálicos/metabolismo , Lesões Encefálicas/tratamento farmacológico , Lesões Encefálicas/metabolismo , Recuperação de Função Fisiológica/efeitos dos fármacos , Camundongos Endogâmicos C57BL , Adesão Celular/efeitos dos fármacos , Humanos , Masculino
10.
Biochem Biophys Res Commun ; 442(1-2): 16-21, 2013 Dec 06.
Artigo em Inglês | MEDLINE | ID: mdl-24211587

RESUMO

Neural stem cells continuously generate new neurons in the ventricular-subventricular zone (V-SVZ) of the postnatal and adult mammalian brain. New neurons born in the rodent V-SVZ migrate toward the olfactory bulb (OB), where they differentiate into interneurons. To reveal novel intracellular molecular mechanisms that control postnatal neuronal migration, we performed a global proteomic search for proteins interacting with Girdin, an essential protein for postnatal neuronal migration. Using GST pull-down and LC-MS/MS shotgun analysis, we identified cytoskeletal proteins, cytoskeleton-binding proteins, and signal-transduction proteins as possible participants in neuronal migration. Our results suggest that Girdin and Girdin-interacting proteins control neuronal migration by regulating actin and/or microtubule dynamics.


Assuntos
Encéfalo/crescimento & desenvolvimento , Movimento Celular , Proteínas dos Microfilamentos/metabolismo , Células-Tronco Neurais/fisiologia , Neurogênese , Neurônios/fisiologia , Proteínas de Transporte Vesicular/metabolismo , Animais , Encéfalo/citologia , Proteínas do Citoesqueleto/metabolismo , Camundongos , Camundongos Endogâmicos ICR , Células-Tronco Neurais/citologia , Neurônios/citologia , Proteômica , Ratos , Ratos Wistar
11.
Sci Rep ; 13(1): 7109, 2023 05 22.
Artigo em Inglês | MEDLINE | ID: mdl-37217545

RESUMO

Recent advances in microscopy techniques, especially in electron microscopy, are transforming biomedical studies by acquiring large quantities of high-precision 3D cell image stacks. To examine cell morphology and connectivity in organs such as the brain, scientists need to conduct cell segmentation, which extracts individual cell regions of different shapes and sizes from a 3D image. This is challenging due to the indistinct images often encountered in real biomedical research: in many cases, automatic segmentation methods inevitably contain numerous mistakes in the segmentation results, even when using advanced deep learning methods. To analyze 3D cell images effectively, a semi-automated software solution is needed that combines powerful deep learning techniques with the ability to perform post-processing, generate accurate segmentations, and incorporate manual corrections. To address this gap, we developed Seg2Link, which takes deep learning predictions as inputs and use watershed 2D + cross-slice linking to generate more accurate automatic segmentations than previous methods. Additionally, it provides various manual correction tools essential for correcting mistakes in 3D segmentation results. Moreover, our software has been optimized for efficiently processing large 3D images in diverse organisms. Thus, Seg2Link offers an practical solution for scientists to study cell morphology and connectivity in 3D image stacks.


Assuntos
Imageamento Tridimensional , Software , Imageamento Tridimensional/métodos , Microscopia Eletrônica , Processamento de Imagem Assistida por Computador/métodos
12.
iScience ; 26(12): 108338, 2023 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-38187188

RESUMO

The cranial muscle is a critical component in the vertebrate head for a predatory lifestyle. However, its evolutionary origin and possible segmental nature during embryogenesis have been controversial. In jawed vertebrates, the presence of pre-otic segments similar to trunk somites has been claimed based on developmental observations. However, evaluating such arguments has been hampered by the paucity of research on jawless vertebrates. Here, we discovered different cellular arrangements in the head mesoderm in lamprey embryos (Lethenteron camtschaticum) using serial block-face scanning electron and laser scanning microscopies. These cell populations were morphologically and molecularly different from somites. Furthermore, genetic comparison among deuterostomes revealed that mesodermal gene expression domains were segregated antero-posteriorly in vertebrates, whereas such segregation was not recognized in invertebrate deuterostome embryos. These findings indicate that the vertebrate head mesoderm evolved from the anteroposterior repatterning of an ancient mesoderm and developmentally diversified before the split of jawless and jawed vertebrates.

13.
Elife ; 122023 02 21.
Artigo em Inglês | MEDLINE | ID: mdl-36805807

RESUMO

Cerebrospinal fluid-contacting neurons (CSF-cNs) are enigmatic mechano- or chemosensory cells lying along the central canal of the spinal cord. Recent studies in zebrafish larvae and lampreys have shown that CSF-cNs control postures and movements via spinal connections. However, the structures, connectivity, and functions in mammals remain largely unknown. Here we developed a method to genetically target mouse CSF-cNs that highlighted structural connections and functions. We first found that intracerebroventricular injection of adeno-associated virus with a neuron-specific promoter and Pkd2l1-Cre mice specifically labeled CSF-cNs. Single-cell labeling of 71 CSF-cNs revealed rostral axon extensions of over 1800 µm in unmyelinated bundles in the ventral funiculus and terminated on CSF-cNs to form a recurrent circuitry, which was further determined by serial electron microscopy and electrophysiology. CSF-cNs were also found to connect with axial motor neurons and premotor interneurons around the central canal and within the axon bundles. Chemogenetic CSF-cNs inactivation reduced speed and step frequency during treadmill locomotion. Our data revealed the basic structures and connections of mouse CSF-cNs to control spinal motor circuits for proper locomotion. The versatile methods developed in this study will contribute to further understanding of CSF-cN functions in mammals.


Assuntos
Locomoção , Peixe-Zebra , Animais , Camundongos , Interneurônios , Neurônios Motores , Neurônios Eferentes , Mamíferos , Receptores de Superfície Celular , Canais de Cálcio
14.
Cell Rep ; 42(5): 112383, 2023 05 30.
Artigo em Inglês | MEDLINE | ID: mdl-37086724

RESUMO

Cross-modal plasticity is the repurposing of brain regions associated with deprived sensory inputs to improve the capacity of other sensory modalities. The functional mechanisms of cross-modal plasticity can indicate how the brain recovers from various forms of injury and how different sensory modalities are integrated. Here, we demonstrate that rewiring of the microglia-mediated local circuit synapse is crucial for cross-modal plasticity induced by visual deprivation (monocular deprivation [MD]). MD relieves the usual inhibition of functional connectivity between the somatosensory cortex and secondary lateral visual cortex (V2L). This results in enhanced excitatory responses in V2L neurons during whisker stimulation and a greater capacity for vibrissae sensory discrimination. The enhanced cross-modal response is mediated by selective removal of inhibitory synapse terminals on pyramidal neurons by the microglia in the V2L via matrix metalloproteinase 9 signaling. Our results provide insights into how cortical circuits integrate different inputs to functionally compensate for neuronal damage.


Assuntos
Microglia , Córtex Visual , Animais , Neurônios/fisiologia , Sinapses/fisiologia , Células Piramidais , Córtex Visual/fisiologia , Plasticidade Neuronal/fisiologia , Vibrissas/fisiologia , Córtex Somatossensorial/fisiologia
15.
Cell Rep Med ; 4(10): 101208, 2023 10 17.
Artigo em Inglês | MEDLINE | ID: mdl-37774703

RESUMO

Dyskinesia is involuntary movement caused by long-term medication with dopamine-related agents: the dopamine agonist 3,4-dihydroxy-L-phenylalanine (L-DOPA) to treat Parkinson's disease (L-DOPA-induced dyskinesia [LID]) or dopamine antagonists to treat schizophrenia (tardive dyskinesia [TD]). However, it remains unknown why distinct types of medications for distinct neuropsychiatric disorders induce similar involuntary movements. Here, we search for a shared structural footprint using magnetic resonance imaging-based macroscopic screening and super-resolution microscopy-based microscopic identification. We identify the enlarged axon terminals of striatal medium spiny neurons in LID and TD model mice. Striatal overexpression of the vesicular gamma-aminobutyric acid transporter (VGAT) is necessary and sufficient for modeling these structural changes; VGAT levels gate the functional and behavioral alterations in dyskinesia models. Our findings indicate that lowered type 2 dopamine receptor signaling with repetitive dopamine fluctuations is a common cause of VGAT overexpression and late-onset dyskinesia formation and that reducing dopamine fluctuation rescues dyskinesia pathology via VGAT downregulation.


Assuntos
Discinesia Induzida por Medicamentos , Transtornos Parkinsonianos , Camundongos , Animais , Agonistas de Dopamina/efeitos adversos , Levodopa/efeitos adversos , Dopamina , Antiparkinsonianos/efeitos adversos , Transtornos Parkinsonianos/induzido quimicamente , Transtornos Parkinsonianos/patologia , Discinesia Induzida por Medicamentos/etiologia , Discinesia Induzida por Medicamentos/tratamento farmacológico , Discinesia Induzida por Medicamentos/patologia , Oxidopamina/efeitos adversos , Ácido gama-Aminobutírico/efeitos adversos
17.
Front Cell Infect Microbiol ; 12: 962495, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36072224

RESUMO

Plasmodium falciparum gametocytes have unique morphology, metabolism, and protein expression profiles in their asexual stages of development. In addition to the striking changes in their appearance, a wide variety of "exo-membrane structures" are newly formed in the gametocyte stage. Little is known about their function, localization, or three-dimensional structural information, and only some structural data, typically two-dimensional, have been reported using conventional electron microscopy or fluorescence microscopy. For better visualization of intracellular organelle and exo-membrane structures, we previously established an unroofing technique to directly observe Maurer's clefts (MCs) in asexual parasitized erythrocytes by removing the top part of the cell's membrane followed by transmission electron microscopy. We found that MCs have numerous tethers connecting themselves to the host erythrocyte membrane skeletons. In this study, we investigated the intracellular structures of gametocytes using unroofing-TEM, Serial Block Face scanning electron microscopy, and fluorescence microscopy to unveil the exo-membrane structures in gametocytes. Our data showed "balloon/pouch"-like objects budding from the parasitophorous vacuole membrane (PVM) in gametocytes, and some balloons included multiple layers of other balloons. Furthermore, numerous bubbles appeared on the inner surface of the erythrocyte membrane or PVM; these were similar to MC-like membranes but were smaller than asexual MCs. Our study demonstrated P. falciparum reforms exo-membranes in erythrocytes to meet stage-specific biological activities during their sexual development.


Assuntos
Imageamento Tridimensional , Plasmodium falciparum , Eritrócitos , Microscopia Eletrônica , Organelas
18.
PLoS One ; 17(12): e0278118, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36454994

RESUMO

Oligodendrocyte precursor cells (OPC) arise from restricted regions of the central nervous system (CNS) and differentiate into myelin-forming cells after migration, but their ultrastructural characteristics have not been fully elucidated. This study examined the three-dimensional ultrastructure of OPCs in comparison with other glial cells in the early postnatal optic nerve by serial block-face scanning electron microscopy. We examined 70 putative OPCs (pOPC) that were distinct from other glial cells according to established morphological criteria. The pOPCs were unipolar in shape with relatively few processes, and their Golgi apparatus were localized in the perinuclear region with a single cisterna. Astrocytes abundant in the optic nerve were distinct from pOPCs and had a greater number of processes and more complicated Golgi apparatus morphology. All pOPCs and astrocytes contained a pair of centrioles (basal bodies). Among them, 45% of pOPCs extended a short cilium, and 20% of pOPCs had centrioles accompanied by vesicles, whereas all astrocytes with basal bodies had cilia with invaginated ciliary pockets. These results suggest that the fine structures of pOPCs during the developing and immature stages may account for their distinct behavior. Additionally, the vesicular transport of the centrioles, along with a short cilium length, suggests active ciliogenesis in pOPCs.


Assuntos
Células Precursoras de Oligodendrócitos , Camundongos , Animais , Microscopia Eletrônica de Varredura , Nervo Óptico , Olho , Centríolos , Antioxidantes
19.
Microbiol Spectr ; 10(3): e0005522, 2022 06 29.
Artigo em Inglês | MEDLINE | ID: mdl-35467361

RESUMO

The BacT/Alert system has been used for detecting the presence of bacteria in various clinical settings as well as in blood services, but it is associated with a relatively high incidence of false-positive results. We analyzed the results of our quality control sterility testing of blood products by BacT/Alert 3D to understand the mechanism of false-positive results. Anaerobic and aerobic bottles were inoculated with 10 mL of samples and cultured in BacT/Alert 3D for 10 days. Positive-reaction cases were classified as true positive if any bacterium was identified or false positive if the identification test had a negative result. The detection algorithm and the bottle graph pattern of the positive reaction cases were investigated. Among the 43,374 samples, 25 true positives (0.06%) and 29 false positives (0.07%) were observed. Although the detection algorithm of all true positives and 25 of 29 false positives was accelerating production of CO2, a steep rise in the bottle graph was observed only in the true positives, and it was not observed in either of the false positives. Four of 29 false positives were dependent on high baseline scatter reflections. Furthermore, evaluating the bottle graph pattern of Streptococcus pneumoniae, a bacterium known to autolyze, we confirmed that no viable bacterium was detected even if a steep rise was observed. In conclusion, the bottle graph pattern of positive reactions allows the differentiation between true positives and false positives. In case of a steep rise without bacterium detection, the bacterium might have autolyzed. Moreover, positive reactions with high baseline scatter reflections, despite immediate loading of bottles after sampling, are potentially false positive. IMPORTANCE In clinical settings, false-positive results are treated as positive until bacterial identification. It may result in the discarding of blood products in blood centers or affect clinical decisions in hospitals or testing facilities. Moreover, the management of these samples is usually time- and labor-consuming. The results of our study may help clinicians and laboratory staff in making a more precise evaluation of positive reactions in BacT/Alert.


Assuntos
Bactérias , Técnicas Bacteriológicas , Humanos
20.
J Exp Med ; 219(4)2022 04 04.
Artigo em Inglês | MEDLINE | ID: mdl-35297954

RESUMO

New neurons, continuously added in the adult olfactory bulb (OB) and hippocampus, are involved in information processing in neural circuits. Here, we show that synaptic pruning of adult-born neurons by microglia depends on phosphatidylserine (PS), whose exposure on dendritic spines is inversely correlated with their input activity. To study the role of PS in spine pruning by microglia in vivo, we developed an inducible transgenic mouse line, in which the exposed PS is masked by a dominant-negative form of milk fat globule-EGF-factor 8 (MFG-E8), MFG-E8D89E. In this transgenic mouse, the spine pruning of adult-born neurons by microglia is impaired in the OB and hippocampus. Furthermore, the electrophysiological properties of these adult-born neurons are altered in MFG-E8D89E mice. These data suggest that PS is involved in the microglial spine pruning and the functional maturation of adult-born neurons. The MFG-E8D89E-based genetic approach shown in this study has broad applications for understanding the biology of PS-mediated phagocytosis in vivo.


Assuntos
Microglia , Fosfatidilserinas , Animais , Antígenos de Superfície/genética , Camundongos , Camundongos Transgênicos , Plasticidade Neuronal , Neurônios
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA