Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Assunto principal
Ano de publicação
Tipo de documento
Assunto da revista
País de afiliação
Intervalo de ano de publicação
1.
Eur J Appl Physiol ; 124(7): 2035-2044, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38383795

RESUMO

PURPOSE: A broad functional movement repertoire is crucial for engaging in physical activity and reducing the risk of injury, both of which are central aspects of lifelong health. As a fundamental exercise in both recreational and rehabilitative training regimes, the bipedal squat (SQBp) incorporates many everyday movement patterns. Crucially, SQBp can only be considered functional if the practitioner can meet the coordinative demands. Many factors affect coordinative aspects of an exercise, most notably external load. Since compound movements are assumed to be organized in a synergistic manner, we employed muscle synergy analysis to examine differences in muscle synergy properties between various external load levels during SQBp. METHODS: Ten healthy male recreational athletes were enrolled in the present study. Each participant performed three sets of ten SQBp on a smith machine at three submaximal load levels (50%, 62.5%, and 75% of 3 repetition maximum) across three non-consecutive days. Muscle activity was recorded from 12 prime movers of SQBp by way of electromyography (EMG). Muscle synergies were analyzed in terms of temporal activation patterns, i.e., waveform, as well as the relative input of each muscle into individual synergies, i.e., weight contribution. RESULTS: Waveforms of muscle synergies did not differ between loads. Weight contributions showed significant differences between load levels, albeit only for the gastrocnemius muscle in a single synergy. CONCLUSION: Taken together, our results imply mostly stable spatiotemporal composition of muscle activity during SQBp, underlining the importance of technical competence during compound movement performance in athletic and rehabilitative settings.


Assuntos
Músculo Esquelético , Humanos , Masculino , Músculo Esquelético/fisiologia , Adulto , Movimento/fisiologia , Contração Muscular/fisiologia , Adulto Jovem , Suporte de Carga/fisiologia , Eletromiografia , Exercício Físico/fisiologia
2.
Heliyon ; 10(9): e29951, 2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38694076

RESUMO

Athletic development centers on optimizing performance, including technical skills and fundamental motor abilities such as strength and speed. Parameters such as maximum contraction force and rate of force development, influence athletic success, although performance gains become harder to achieve as athletic abilities increase. Non-invasive transcranial direct current stimulation of the cerebellum (CB-tDCS) has been used successfully to increase force production in novices, although the potential effects in athletes remain unexplored. The present study examined the effects of CB-tDCS on maximum isometric voluntary contraction force (MVCiso) and isometric rate of force development (RFDiso) during a bench press task in well-trained athletes. 21 healthy, male, strength-trained athletes participated in a randomized, sham-controlled, double-blinded crossover design. Each participant completed the isometric bench press (iBP) task on two separate days, with at least 5 days between sessions, while receiving either CB-tDCS or sham stimulation. Electromyography (EMG) recordings of three muscles involved in iBP were acquired bilaterally to uncover differences in neuromuscular activation and agonist-antagonist co-contraction between conditions. Contrary to our hypothesis, no significant differences in MVCiso and RFDiso were observed between CB-tDCS and sham conditions. Furthermore, no tDCS-induced differences in neuromuscular activation or agonist-antagonist co-contraction were revealed. Here, we argue that the effects of CB-tDCS on force production appear to depend on the individual's training status. Future research should study individual differences in tDCS responses between athletes and novices, as well as the potential of high-definition tDCS for precise brain region targeting to potentially enhance motor performance in athletic populations.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA