Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Angew Chem Int Ed Engl ; 62(37): e202306751, 2023 Sep 11.
Artigo em Inglês | MEDLINE | ID: mdl-37483166

RESUMO

Designing polymeric systems with ultra-high optical activity is instrumental in the pursuit of smart artificial chiroptical materials, including the fundamental understanding of structure/property relations. Herein, we report a diacetylene (DA) moiety flanked by chiral D- and L-FF dipeptide methyl esters that exhibits efficient topochemical photopolymerization in the solid phase to furnish polydiacetylene (PDA) with desired control over the chiroptical properties. The doping of the achiral gold nanoparticles provides plasmonic interaction with the PDAs to render asymmetric shape to the circular dichroism bands. With the judicious design of the chiral amino acid ligand appended to the AuNPs, we demonstrate the first example of selective chiral amplification mediated by stereo-structural matching of the polymer-plasmonic AuNP hybrid pairs. Such ordered self-assembly aided by topochemical polymerization in peptide-tethered PDA provides a smart strategy to produce soft responsive materials for applications in chiral photonics.

2.
Methods Enzymol ; 697: 473-498, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38816133

RESUMO

Development of biomolecular enzyme mimics to efficiently catalyse biochemical reactions are of prime relevance for the bulk scale production of industrially relevant biocatalyst. In this regard, amyloidogenic peptides act as suitable self-assembling scaffolds, providing stable nanostructures with high surface area facilitating biocatalysis. Herein, we rationally design two positional amyloidogenic peptide isomers, "Fmoc-VYYAHH (1)" and "Fmoc-VHHAYY (2)" considering catalytic and metal binding affinity of histidine and tyrosine when placed in periphery vs. inner core of the peptide sequence. With an ultimate objective of designing metalloenzyme mimic, we choose Co2+ and Cu2+ as divalent transition metal cations for peptide complexation to aid in catalysis. After optimizing self-assembly of innate peptides, we investigate metal-peptide binding ratio and co-ordination, finally selecting 1:1 peptide metal complex suitable for biocatalysis. Metallopeptides act as better catalysts than the innate peptides as acyl esterase when tyrosines were present at the periphery. Kinetic parameters for assessing hydrolysis rate were calculated by fitting data into Michaelis-Menten and Lineweaver Burk plots. Catalytic activity is altered depending on the stability of peptide metal complexes. 2-Cu acting as the best biocatalyst with a kcat/KM = 0.08 M/s. The protocols mentioned in this chapter meticulously cover the design, synthesis, self-assembly and enzyme kinetics.


Assuntos
Biocatálise , Cobre , Cobre/química , Cinética , Príons/química , Príons/metabolismo , Cobalto/química , Peptídeos/química , Peptídeos/metabolismo , Sequência de Aminoácidos , Catálise , Hidrólise
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA