Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 54
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Chembiochem ; 24(9): e202300030, 2023 05 02.
Artigo em Inglês | MEDLINE | ID: mdl-36867729

RESUMO

One of the main problems in developing immunosensors featuring carbon nanotubes (CNTs) is immobilizing antibodies (Abs) onto the CNT surface to afford selective binding to target antigens (Ags). In this work, we developed a practical supramolecular Ab conjugation strategy based on resorc[4]arene modifiers. To improve the Ab orientation on the CNTs surface and optimizing the Ab/Ag interaction, we exploited the host-guest approach by synthesizing two newly resorc[4]arene linkers R1 and R2 via well-established procedures. The upper rim was decorated with eight methoxyl groups to promote selective recognition of the fragment crystallizable (Fc ) region of the Ab. Moreover, the lower rim was functionalized with 3-bromopropyloxy or 3-azidopropiloxy substituents to bind the macrocycles on the multi-walled carbon nanotubes (MWCNTs) surface. Accordingly, several chemical modifications of MWCNTs were evaluated. After the morphological and electrochemical characterization of nanomaterials, the resorc[4]arene-modified MWCNTs were deposited onto a glassy carbon electrode surface to evaluate their potential applicability for label-free immunosensor development. The most promising system showed an improved electrode active area (AEL ) of almost 20 % and a site-oriented immobilization of the SARS-CoV-2 spike protein S1 antibody (Ab-SPS1). The developed immunosensor revealed a good sensitivity (23.64 µA mL ng-1 cm-2 ) towards the SPS1 antigen and a limit of detection (LOD) of 1.01 ng mL-1 .


Assuntos
Técnicas Biossensoriais , COVID-19 , Nanotubos de Carbono , Humanos , Técnicas Biossensoriais/métodos , Nanotubos de Carbono/química , Imunoensaio , SARS-CoV-2 , Anticorpos/química , Antígenos , Limite de Detecção , Técnicas Eletroquímicas/métodos , Ouro/química
2.
Bioconjug Chem ; 34(3): 529-537, 2023 03 15.
Artigo em Inglês | MEDLINE | ID: mdl-36753752

RESUMO

In recent years, several efforts have been made to develop selective, sensitive, fast response, and miniaturized immunosensors with improved performance for the monitoring and screening of analytes in several matrices, significantly expanding the use of this technology in a broad range of applications. However, one of the main technical challenges in developing immunosensors is overcoming the complexity of binding antibodies (Abs) to the sensor surface. Most immobilizing approaches lead to a random orientation of Abs, resulting in lower binding site density and immunoaffinity. In this context, supramolecular chemistry has emerged as a suitable surface modification tool to achieve the preorganization of artificial receptors and to improve the functional properties of self-assembled monolayers. Herein, a supramolecular chemistry/nanotechnology-based platform was conceived to develop sensitive label-free electrochemical immunosensors, by using a resorcarene macrocycle as an artificial linker for the oriented antibody immobilization. To this aim, a water-soluble bifunctional resorc[4]arene architecture (RW) was rationally designed and synthesized to anchor gold-coated magnetic nanoparticles (Au@MNPs) and to maximize the amount of the active immobilized antibody (Ab) in the proper "end-on" orientation. The resulting supramolecular chemistry-modified nanoparticles, RW@Au@MNPs, were deposited onto graphite screen printed electrodes which were then employed to immobilize three different Abs. Furthermore, an immunosensor for atrazine (ATZ) analysis was realized and characterized by the differential pulse voltammetry technique to demonstrate the validity of the developed biosensing platform as a proof of concept for electrochemical immunosensors. The RW-based immunosensor improved AbATZ loading on Au@MNPs and sensitivity toward ATZ by almost 1.5 times compared to the random platform. Particularly, the electrochemical characterization of the developed immunosensor displays a linearity range toward ATZ within 0.05-1.5 ng/mL, a limit of detection of 0.011 ng/ml, and good reproducibility and stability. The immunosensor was tested by analyzing spiked fortified water samples with a mean recovery ranging from 95.7 to 108.4%. The overall good analytical performances of this immunodevice suggest its application for the screening and monitoring of ATZ in real matrices. Therefore, the results highlighted the successful application of the resorc[4]arene-based sensor design strategy for developing sensitive electrochemical immunosensors with improved analytical performance and simplifying the Ab immobilization procedure.


Assuntos
Técnicas Biossensoriais , Nanopartículas de Magnetita , Nanopartículas Metálicas , Ouro/química , Técnicas Biossensoriais/métodos , Reprodutibilidade dos Testes , Técnicas Eletroquímicas/métodos , Imunoensaio/métodos , Anticorpos/química , Eletrodos , Nanopartículas Metálicas/química , Limite de Detecção
3.
Molecules ; 28(14)2023 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-37513297

RESUMO

This work aimed to develop an easy-to-use smartphone-based electrochemical biosensor to quickly assess a coffee blend's total polyphenols (Phs) content at the industrial and individual levels. The device is based on a commercial carbon-based screen-printed electrode (SPE) modified with multi-walled carbon nanotubes (CNTs) and gold nanoparticles (GNPs). At the same time, the biological recognition element, Laccase from Trametes versicolor, TvLac, was immobilized on the sensor surface by using glutaraldehyde (GA) as a cross-linking agent. The platform was electrochemically characterized to ascertain the influence of the SPE surface modification on its performance. The working electrode (WE) surface morphology characterization was obtained by scanning electron microscopy (SEM) and Fourier-transform infrared (FT-IR) imaging. All the measurements were carried out with a micro-potentiostat, the Sensit Smart by PalmSens, connected to a smartphone. The developed biosensor provided a sensitivity of 0.12 µA/µM, a linear response ranging from 5 to 70 µM, and a lower detection limit (LOD) of 2.99 µM. Afterward, the biosensor was tested for quantifying the total Phs content in coffee blends, evaluating the influence of both the variety and the roasting degree. The smartphone-based electrochemical biosensor's performance was validated through the Folin-Ciocâlteu standard method.


Assuntos
Técnicas Biossensoriais , Nanopartículas Metálicas , Nanotubos de Carbono , Nanotubos de Carbono/química , Café , Ouro/química , Trametes , Espectroscopia de Infravermelho com Transformada de Fourier , Smartphone , Nanopartículas Metálicas/química , Eletrodos , Polifenóis , Técnicas Biossensoriais/métodos , Técnicas Eletroquímicas
4.
Anal Bioanal Chem ; 414(6): 2055-2064, 2022 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-35043261

RESUMO

This work presents the realization of a label-free electrochemical immunosensor for the quick, cheap, and straightforward determination of atrazine. This biodevice is based on developing a technological platform where a gold screen printed electrode (Au-SPE) surface was modified by the electrodeposition of a highly porous gold layer. As an internal probe redox, a Prussian Blue thin layer (PB) was then electrosynthetized onto the modified Au-SPE. Atrazine antibody (Ab-ATZ) was immobilized using G protein-functionalized magnetic nanoparticles (MNPs@protG) to ensure the correct orientation of the antibody to enhance the immunoaffinity. Under optimum experimental conditions, the electrochemical characterization of the developed immunosensor displays a linearity range towards atrazine within 0.05-1.5 ng/mL, a LOD of 0.011 ng/mL good reproducibility and stability. The immunosensor was tested in the analysis of spiked drinking water samples with a mean recovery ranging from 95.7 to 108.4%. The overall good analytical performances of this immunodevice suggest its application for the screening and monitoring of atrazine in real matrices.


Assuntos
Atrazina , Técnicas Biossensoriais , Nanopartículas de Magnetita , Nanopartículas Metálicas , Técnicas Eletroquímicas , Ouro/química , Imunoensaio , Limite de Detecção , Nanopartículas Metálicas/química , Reprodutibilidade dos Testes
5.
Chemistry ; 26(38): 8400-8406, 2020 Jul 08.
Artigo em Inglês | MEDLINE | ID: mdl-32240571

RESUMO

One of the main problems in the development of immunosensors is to overcome the complexity of binding antibodies to the sensor surface. Most immobilizing methods lead to a random orientation of antibodies with a lower binding site density and immunoaffinity. In order to control the orientation of antibody immobilization, several resorc[4]arene derivatives were designed and synthesized. After the spectroscopic characterization of resorc[4]arene self-assembled monolayers (SAMs) onto gold films, the surface coverage and the orientation of insulin antibody (Ab-Ins) were assessed by a surface plasmon resonance (SPR) technique and compared with a random immobilization method. Experimental results combined with theoretical studies confirmed the dipole-dipole interaction as an important factor in antibody orientation and demonstrated the importance of the upper rim functionalization of resorcarenes. Accordingly, resorcarene 5 showed a major binding force towards Ab-Ins thanks to the H-bond interactions with the amine protein groups. Based on these findings, the resorcarene-based immunosensor is a powerful system with improved sensitivity providing new insight into sensor development.


Assuntos
Anticorpos Imobilizados/química , Anticorpos/química , Ouro/química , Ressonância de Plasmônio de Superfície/métodos , Sítios de Ligação
6.
Methods ; 129: 89-95, 2017 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-28600228

RESUMO

In this work, we have developed for the first time a method to make novel gold and platinum hybrid bimetallic nanostructures differing in shape and size. Au-Pt nanostructures were prepared by electrodeposition in two simple steps. The first step consists of the electrodeposition of nanocoral Au onto a gold substrate using hydrogen as a dynamic template in an ammonium chloride solution. After that, the Pt nanostructures were deposited onto the nanocoral Au organized in pores. Using Pt (II) and Pt (IV), we realized nanocoral Au decorated with Pt nanospheres and nanocoral Au decorated with Pt nanoflowers, respectively. The bimetallic nanostructures showed better capability to electrochemically oxidize hydrogen peroxide compared with nanocoral Au. Moreover, Au-Pt nanostructures were able to lower the potential of detection and a higher performance was obtained at a low applied potential. Then, glucose oxidase was immobilized onto the bimetallic Au-Pt nanostructure using cross-linking with glutaraldehyde. The biosensor was characterized by chronoamperometry at +0.15V vs. Ag pseudo-reference electrode (PRE) and showed good analytical performances with a linear range from 0.01 to 2.00mM and a sensitivity of 33.66µA/mMcm2. The good value of Kmapp (2.28mM) demonstrates that the hybrid nanostructure is a favorable environment for the enzyme. Moreover, the low working potential can minimize the interference from ascorbic acid and uric acid as well as reducing power consumption to effect sensing. The simple procedure to realize this nanostructure and to immobilize enzymes, as well as the analytical performances of the resulting devices, encourage the use of this technology for the development of biosensors for clinical analysis.


Assuntos
Técnicas Biossensoriais/métodos , Técnicas Eletroquímicas/métodos , Peróxido de Hidrogênio/isolamento & purificação , Nanoestruturas/química , Glucose/química , Glucose Oxidase/química , Ouro/química , Peróxido de Hidrogênio/química , Platina/química
7.
Sensors (Basel) ; 17(4)2017 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-28394296

RESUMO

In this research, we developed a direct-flow surface plasmon resonance (SPR) immunosensor for ampicillin to perform direct, simple, and fast measurements of this important antibiotic. In order to better evaluate the performance, it was compared with a conventional amperometric immunosensor, working with a competitive format with the aim of finding out experimental real advantages and disadvantages of two respective methods. Results showed that certain analytical features of the new SPR immunodevice, such as the lower limit of detection (LOD) value and the width of the linear range, are poorer than those of a conventional amperometric immunosensor, which adversely affects the application to samples such as natural waters. On the other hand, the SPR immunosensor was more selective to ampicillin, and measurements were more easily and quickly attained compared to those performed with the conventional competitive immunosensor.


Assuntos
Ressonância de Plasmônio de Superfície , Ampicilina , Antibacterianos , Técnicas Biossensoriais , Imunoensaio
8.
Anal Bioanal Chem ; 408(12): 3203-11, 2016 May.
Artigo em Inglês | MEDLINE | ID: mdl-26874693

RESUMO

In this work, several theoretical aspects involved in the first-generation inhibition-based electrochemical biosensor measurements have been discussed. In particular, we have developed a theoretical-methodological approach for the characterization of the kinetic interaction between alkaline phosphatase (AlP) and 2,4-dichlorophenoxy acetic acid (2,4-D) as representative inhibitor studied by means of cyclic voltammetry and amperometry. Based on these findings, a biosensor for the fast, simple, and inexpensive determination of 2,4-D has been developed. The enzyme has been immobilized on screen-printed electrodes (SPEs). To optimize the biosensor performances, several carbon-based SPEs, namely graphite (G), graphene (GP), and multiwalled carbon nanotubes (MWCNTs), have been evaluated. AlP was immobilized on the electrode surface by means of polyvinyl alcohol with styryl-pyridinium groups (PVA-SbQ) as cross-linking agent. In the presence of ascorbate 2-phosphate (A2P) as substrate, the herbicide has been determined, thanks to its inhibition activity towards the enzyme catalyzing the oxidation of A2P to ascorbic acid (AA). Under optimum experimental conditions, the best performance in terms of catalytic efficiency has been demonstrated by MWCNTs SPE-based biosensor. The inhibition biosensor shows a linearity range towards 2,4-D within 2.1-110 ppb, a LOD of 1 ppb, and acceptable repeatability and stability. This analysis method was applied to fortified lake water samples with recoveries above 90%. The low cost of this device and its good analytical performances suggest its application for the screening and monitoring of 2,4-D in real matrices.


Assuntos
Ácido 2,4-Diclorofenoxiacético/análise , Técnicas Biossensoriais , Técnicas Eletroquímicas/métodos , Cinética
9.
Anal Bioanal Chem ; 407(4): 1131-7, 2015 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-25407429

RESUMO

The present work describes the development and optimization of electrochemical biosensors for specific determination of the biogenic polyamine spermine (Spm) and spermidine (Spmd) whose assessment represents a novel important analytical tool in food analysis and human diagnostics. These biosensors have been prepared using novel engineered enzymes: polyamine oxidase (PAO) endowed with selectivity towards Spm and Spmd and spermine oxidase (SMO) characterized by strict specificity towards Spm. The current design entails biosensors in which the enzymes were entrapped in poly(vinyl alcohol) bearing styrylpyridinium groups (PVA-SbQ), a photocrosslinkable gel, onto an electrode surface. Screen-printed electrodes (SPEs) were used as electrochemical transducers for enzymatically produced hydrogen peroxide, operating at different potential vs Ag/AgCl according to the material of the working electrode (WE): +700 mV for graphite (GP) or -100 mV for Prussian blue (PB)-modified SPE, respectively. Biosensor performances were evaluated by means of flow injection amperometric (FIA) measurements. The modified electrodes showed good sensitivity, long-term stability and reproducibility. Under optimal conditions, the PAO biosensor showed a linear range 0.003-0.3 mM for Spm and 0.01-0.4 mM for Spmd, while with the SMO biosensor, a linear range of 0.004-0.5 mM for Spm has been obtained. The main kinetic parameters apparent Michaelis constant (K M), turnover number (K cat) and steady-state current (I max) were determined. The proposed device was then applied to the determination of biogenic amines in blood samples. The results obtained were in good agreement with those obtained with the GC-MS reference method.


Assuntos
Amina Oxidase (contendo Cobre)/metabolismo , Técnicas Biossensoriais/métodos , Enzimas Imobilizadas/metabolismo , Espermina/análise , Técnicas Biossensoriais/instrumentação , Humanos , Limite de Detecção , Oxirredutases atuantes sobre Doadores de Grupo CH-NH/metabolismo , Proteínas Recombinantes , Espermidina/análise , Espermidina/sangue , Espermina/sangue , Especificidade por Substrato , Zea mays/enzimologia , Poliamina Oxidase
10.
J Nanosci Nanotechnol ; 15(5): 3423-8, 2015 May.
Artigo em Inglês | MEDLINE | ID: mdl-26504961

RESUMO

Nafion, an ion exchange polymer that is very resistant to chemical attack, even by strong oxidant at high temperatures, has found great increasing use as a film material; however, its use as immobilizing agent in third-generation biosensors is hindered due to the low rate of charge transfer in the pure Nafion film. In this work we showed that the use of functionalized multi-walled carbon nanotubes Nafion/MWCNTs composite film for modification of the carbon-based electrode surfaces would increase the charge transfer rate greatly; the composite has proven to efficiently immobilize two different heme proteins (catalase and cytochrome c) and to enhance the electrochemical performances of several carbon electrode materials (glassy carbon, mesoporous graphite, graphite and graphene) either used as classical electrodes or screen printed ones. The electrochemical signal of both redox proteins becomes more reversible and the electron transfer kinetic constant increases. At the same time the biological activity is maintained indicating that the immobilization procedure allows the proteins to retain a native-like structure.


Assuntos
Técnicas Biossensoriais/instrumentação , Carbono/química , Proteínas Imobilizadas/química , Nanocompostos/química , Animais , Catalase/química , Bovinos , Citocromos c/química , Elétrons , Polímeros de Fluorcarboneto/química , Teste de Materiais
11.
Sensors (Basel) ; 15(5): 10255-70, 2015 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-25942643

RESUMO

A detailed comparison was made of the analytical features of a new Surface Plasmon Resonance (SPR) immunodevice for triazine pesticide determination with those of two other amperometric (conventional and screen-printed) immunosensors and the advantages and disadvantages of the SPR method were thoroughly investigated. For conventional amperometric and screen-printed devices, "competitive" assays were used; conversely, the SPR transduction technique allowed a "direct" measurement format to be used. As far as the main analytical data are concerned, the SPR method does not seem to offer substantial advantages. Nevertheless the measurement time is much shorter and the measurement itself much easier to perform. Lastly several applications and recovery tests were carried out on bovine milk samples, before and after spiking, to check for triazine pesticides in the samples, obtaining satisfactory results.


Assuntos
Técnicas Biossensoriais/métodos , Eletroquímica/métodos , Leite/química , Praguicidas/análise , Ressonância de Plasmônio de Superfície/métodos , Triazinas/análise , Animais , Bovinos
12.
ChemSusChem ; : e202400554, 2024 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-38728595

RESUMO

Electrochemical energy storage systems based on sulfur and lithium can theoretically deliver high energy with the further benefit of low cost. However, the working mechanism of this device involves the dissolution of sulfur to high-molecular weight lithium polysulfides (LiPs with general formula Li2Sn, n≥4) in the electrolyte during the discharge process. Therefore, the resulting migration of partially dissociated LiPs by diffusion or under the effect of the electric field to the lithium anode, activates an internal shuttle mechanism, reduces the active material and in general leads to loss of performance and cycling stability. These drawbacks poses challenges to the commercialization of Li/S cells in the short term. In this study, we report on the decoration of reduced graphene oxide with MoO3 particles to enhance interactions with LiPs and retain sulfur at the cathode side. The combination of experiments and density functional theory calculations demonstrated improvements in binding interactions between the cathode and sulfur species, enhancing the cycling stability of the Li/S cells.

13.
Talanta ; 251: 123755, 2023 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-35932635

RESUMO

We report a new sensitive label-free electrochemical immunosensor to detect Vitamin D3 (25-OHD3) in untreated serum samples. To this aim, a graphite screen printed electrode (SPE) was modified using cysteamine (CYM) functionalized core-shell magnetic nanoparticles (Au@MNPs) then, the 25-OHD3 antibody (AbD) was immobilized via glutaraldehyde crosslinking. The several steps involved in the immunosensor development and 25-OHD3 analysis were monitored by using differential pulse voltammetry (DPV). The developed immunosensor showed a LOD of 2.4 ng mL-1 and a linear range between 7.4 and 70 ng mL-1. The effectiveness of the immunosensor in human serum analysis was assessed by comparing the results obtained with the chemiluminescence-immunoassay (CLIA) reference method. The high sensitivity and excellent agreement with the reference method suggest its potential use as a POCT to monitor hypovitaminosis 25-OHD levels.


Assuntos
Técnicas Biossensoriais , Grafite , Nanopartículas Metálicas , Técnicas Biossensoriais/métodos , Colecalciferol , Cisteamina , Técnicas Eletroquímicas/métodos , Eletrodos , Glutaral , Ouro , Humanos , Imunoensaio/métodos , Limite de Detecção
14.
Langmuir ; 28(6): 3322-31, 2012 Feb 14.
Artigo em Inglês | MEDLINE | ID: mdl-22225408

RESUMO

The reversible assembly of ß-cyclodextrin-functionalized gold NPs (ß-CD Au NPs) is studied on mixed self-assembled monolayer (SAM), formed by coadsorption of redox-active ferrocenylalkylthiols and n-alkanethiols on gold surfaces. The surface coverage and spatial distribution of the ß-CD Au NPs monolayer on the gold substrate are tuned by the self-assembled monolayer composition. The binding and release of ß-CD Au NPs to and from the SAMs modified surface are followed by surface plasmon resonance (SPR) spectroscopy. The redox state of the tethered ferrocene in binary SAMs controls the formation of the supramolecular interaction between ferrocene moieties and ß-CD-capped Au NPs. As a result, the potential-induced uptake and release of ß-CD Au NPs to and from the surface is accomplished. The competitive binding of ß-CD Au NPs with guest molecules in solution shifted the equilibrium of the complexation-decomplexation process involving the supramolecular interaction with the Fc-functionalized surface. The dual controlled assembly of ß-CD Au NPs on the surface enabled to use two stimuli as inputs for logic gate activation; the coupling between the localized surface plasmon, associated with the Au NP, and the surface plasmon wave, associated with the thin metal surface, is implemented as readout signal for "AND" logic gate operations.

15.
Biochim Biophys Acta ; 1804(4): 899-908, 2010 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-20056172

RESUMO

The electrochemical studies of laccase-mediator systems are aimed at understanding the mechanism of their redox transformation and their efficiency in both homogeneous and heterogeneous reactions; this topic has paramount application spanning from bleaching of paper pulp and the enzymatic degradation of lignin to the biosensors and biofuel cell development. In this paper four different laccases from Trametes hirsuta (ThL), Trametes versicolor (TvL), Melanocarpus albomyces (r-MaL) and Rhus vernicifera (RvL) were characterized from both biochemical and electrochemical points of view. Two of them (TvL and ThL) are high redox potential and two (RvL and r-MaL) are low redox potential laccases. The outline of this work is focused on the determination of catalytic and bioelectrochemical properties of these four enzymes in homogenous solution as well as immobilized onto electrode surface in the presence of a set of different redox mediators. The results measured in the homogenous reaction system correlated well with those measured with the immobilized enzymes. In addition, they are in good agreement with those reported with reference techniques, suggesting that the electrochemical methods employed in this work can be applied well in place of the traditional techniques commonly used for the kinetic characterization of laccases. These results are also discussed in terms of the known amino acid sequences and three-dimensional (3D) structures of the laccases.


Assuntos
Proteínas Fúngicas/química , Proteínas Fúngicas/metabolismo , Lacase/química , Lacase/metabolismo , Proteínas de Plantas/química , Proteínas de Plantas/metabolismo , Sequência de Aminoácidos , Catálise , Técnicas Eletroquímicas , Enzimas Imobilizadas , Proteínas Fúngicas/genética , Cinética , Lacase/genética , Dados de Sequência Molecular , Oxirredução , Proteínas de Plantas/genética , Rhus/enzimologia , Rhus/genética , Homologia de Sequência de Aminoácidos , Sordariales/enzimologia , Sordariales/genética , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz , Trametes/enzimologia , Trametes/genética
16.
J Mol Recognit ; 24(4): 707-14, 2011.
Artigo em Inglês | MEDLINE | ID: mdl-21584881

RESUMO

The tumour suppressor p53 plays a crucial role in cell stress response and its anticancer activity is mainly down-regulated by the oncoprotein Mdm2 that, upon binding to p53, blocks its transcriptional activity and promotes its ubiquitin-dependent degradation. Targeting Mdm2-p53 interaction is believed to be the most direct of all p53-activating strategies to treat tumours in which p53 has retained its wild-type function. The bacterial protein Azurin has been shown to bind p53, inhibiting cancer cell proliferation likely through a post-translational increasing of the p53 level. This apparent antagonist action with respect to the Mdm2-p53 functional interaction suggests that binding of Azurin to p53 might interfere with the Mdm2-p53 association and, thus, preventing p53 from degradation. Toward this end, a detailed kinetic characterization of the binding interaction of these three proteins has been performed by surface plasmon resonance. The occurrence of specific binary interactions of both Azurin and Mdm2 with p53, as investigated more appropriately in their full-length conformation, is ascertained and the corresponding association and dissociation rate constants are measured. Interestingly enough, the three proteins are likely engaged in a ternary interaction, whose kinetics points out that binding of Azurin to p53 causes a significant decrease of the Mdm2-p53 association rate constant and binding affinity, without hindering the accessibility of Mdm2 to the binding pocket of p53. The Azurin-induced p53 conformational change, as demonstrated by circular dichroism, suggests that the protein may affect Mdm2-p53 association through an allosteric mechanism, which could give an useful insight into designing new anticancer drugs.


Assuntos
Azurina/metabolismo , Proteínas Proto-Oncogênicas c-mdm2/metabolismo , Proteína Supressora de Tumor p53/metabolismo , Humanos , Ligação Proteica , Ressonância de Plasmônio de Superfície
17.
Langmuir ; 27(20): 12606-13, 2011 Oct 18.
Artigo em Inglês | MEDLINE | ID: mdl-21895003

RESUMO

The integration of biological molecules and nanoscale components provides a fertile basis for the construction of hybrid materials of synergic properties and functions. Stable protein 1 (SP1), a highly stable ring shaped protein, was recently used to display different functional domains, to bind nanoparticles (NPs), and to spontaneously form two and three-dimensional structures. Here we show an approach to wire redox enzymes on this self-assembled protein-nanoparticle hybrid. Those hybrids are genetically engineered SP1s, displaying glucose oxidase (GOx) enzymes tethered to the protein inner pore. Moreover, the Au-NP-protein hybrids self-assembled to multiple enzymatic layers on the surface. By wiring the redox enzymes to the electrode, we present an active structure for the bioelectrocatalytic oxidation of glucose. This system demonstrates for the first time a three-dimensional assembly of multiple catalytic modules on a protein scaffold with an efficient electrical wiring of the enzyme units on an electrode surface, thus implementing a hybrid electrically active unit for nanobioelectronic applications.


Assuntos
Glucose Oxidase/química , Ouro/química , Nanopartículas Metálicas/química , Microscopia de Força Atômica , Modelos Moleculares , Oxirredução , Compostos de Sulfidrila/química
18.
Anal Bioanal Chem ; 401(2): 707-16, 2011 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-21644017

RESUMO

In this work, we have characterized a diamine oxidase (DAO) from Lathyrus sativus and evaluated its use, for the first time, as biocatalytic component of an electrochemical biosensor for the determination of biogenic amines index in wine and beer samples. Firstly, DAO was electrokinetically characterized free in solution by means of a platinum electrode and then immobilized by using polyazetidine prepolimer on the surface of screen-printed electrodes constituted of two gold working electrodes. The amperometric measurements were carried out by using a flow system at a fixed potential of +600 mV vs the internal silver pseudo reference in phosphate buffer solution (0.1 mol l(-1), pH = 7.4). The analysis of wine and beer samples were performed in flow injection system using the dual channel transducer providing simultaneous detection of sample and blank signal, and the resulting signal (after subtraction of the blank signal) was referred to that of putrescine. The results were compared with those obtained using a modified reference method based on gas chromatography-mass spectrometry analysis on the same samples. The results obtained in the analysis of Italian wines shows the better suitability of DAO-based biosensor in the determination of the biogenic amines (BAs) index expressed as putrescine equivalent in both red and white wines, being less efficient in beer samples where it underestimates by about 50% the BAs content.


Assuntos
Amina Oxidase (contendo Cobre)/química , Cerveja/análise , Aminas Biogênicas/análise , Técnicas Biossensoriais , Lathyrus/enzimologia , Vinho/análise , Amina Oxidase (contendo Cobre)/metabolismo , Biocatálise , Aminas Biogênicas/metabolismo , Eletroquímica , Eletrodos , Enzimas Imobilizadas/química , Enzimas Imobilizadas/metabolismo , Cromatografia Gasosa-Espectrometria de Massas , Ouro/química , Platina/química , Propriedades de Superfície
19.
Anal Chem ; 82(17): 7335-42, 2010 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-20698498

RESUMO

Bifunctional hydroxyl/thiol-functionalized fourth-generation polyamidoamine dendrimer (G4-PAMAM)-encapsulated Au nanoparticle (NP) was synthesized and immobilized on a mixed self-assembled monolayer (SAM)-modified gold surface. This modified surface was resistant to nonspecific adsorption of proteins having a wide range of molecular weight and isoelectric points. Part of the dendrimer thiol groups were converted to hydrazide functionalities providing an activated surface available to subsequently immobilize the receptor for developing a sensor surface to immunoaffinity reaction. Herein, the surface plasmon resonance (SPR) detection of insulin was obtained by means of a competitive immunoassay principle. The resulting Au NP dendrimer-modified surface provided an assay with high stability, significantly enhanced sensitivity, and a detection limit for analyzing insulin of 0.5 pM. The SPR detection of insulin was amplified due to the changes in the dielectric properties of the matrixes, occurring upon the biorecognition processes on the sensor surface, through the coupling of the localized plasmon of the NPs with the surface plasmon wave. The developed sensor chip was used to analyze insulin in human serum samples from healthy and diabetic patients. The results showed good correlation to the reference method. The specificity and the improved sensitivity of this biosensing platform could have significant implications for the detection of a wide range of molecules and biomarkers in complex biological media.


Assuntos
Técnicas Biossensoriais/métodos , Dendrímeros/química , Ouro/química , Insulina/sangue , Nanopartículas Metálicas/química , Nylons/química , Ressonância de Plasmônio de Superfície/métodos , Biomarcadores/sangue , Humanos
20.
Anal Bioanal Chem ; 398(4): 1545-64, 2010 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-20414768

RESUMO

Self-assembled monolayers (SAMs) provide a convenient, flexible and simple system to tailor the interfacial properties of metals, metal oxides and semiconductors. Monomolecular films prepared by self-assembly are attractive for several exciting applications because of the unique possibility of making the selection of different types of terminal functional groups and as emerging tools for nanoscale observation of biological interactions. The tenability of SAMs as platforms for preparing biosurfaces is reviewed and critically discussed. The different immobilization approaches used for anchoring proteins to SAMs are considered as well as the nature of SAMs; particular emphasis is placed on the chemical specificity of protein attachment in view of preserving protein native structure necessary for its functionality. Regarding this aspect, particular attention is devoted to the relation between the immobilization process and the electrochemical response (i.e. electron transfer) of redox proteins, a field where SAMs have attracted remarkable attention as model systems for the design of electronic devices. Strategies for creating protein patterns on SAMs are also outlined, with an outlook on promising and challenging future directions for protein biochip research and applications.


Assuntos
Técnicas Biossensoriais/instrumentação , Ouro/química , Proteínas Imobilizadas/química , Compostos de Sulfidrila/química , Técnicas Biossensoriais/métodos , Ligação Proteica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA