Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Biomaterials ; 285: 121539, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35500393

RESUMO

Lung cancer is a major contributor to cancer-related death worldwide. siRNA nanomedicines are powerful tools for cancer therapeutics. However, there are challenges to overcome to increase siRNA delivery to solid tumors, including penetration of nanoparticles into a complex microenvironment following systemic delivery while avoiding rapid clearance by the reticuloendothelial system, and limited siRNA release from endosomes once inside the cell. Here we characterized cell uptake, intracellular trafficking, and gene silencing activity of miktoarm star polymer (PDMAEMA-POEGMA) nanoparticles (star nanoparticles) complexed to siRNA in lung cancer cells. We investigated the potential of nebulized star-siRNA nanoparticles to accumulate into orthotopic mouse lung tumors to inhibit expression of two genes [ßIII-tubulin, Polo-Like Kinase 1 (PLK1)] which: 1) are upregulated in lung cancer cells; 2) promote tumor growth; and 3) are difficult to inhibit using chemical drugs. Star-siRNA nanoparticles internalized into lung cancer cells and escaped the endo-lysosomal pathway to inhibit target gene expression in lung cancer cells in vitro. Nebulized star-siRNA nanoparticles accumulated into lungs and silenced the expression of ßIII-tubulin and PLK1 in mouse lung tumors, delaying aggressive tumor growth. These results demonstrate a proof-of-concept for aerosol delivery of star-siRNA nanoparticles as a novel therapeutic strategy to inhibit lung tumor growth.


Assuntos
Neoplasias Pulmonares , Nanopartículas , Aerossóis , Animais , Linhagem Celular Tumoral , Pulmão/patologia , Neoplasias Pulmonares/tratamento farmacológico , Neoplasias Pulmonares/genética , Camundongos , Nanopartículas/química , Polímeros/química , RNA Interferente Pequeno/genética , Tubulina (Proteína) , Microambiente Tumoral
2.
Oncogene ; 36(4): 501-511, 2017 01 26.
Artigo em Inglês | MEDLINE | ID: mdl-27321182

RESUMO

Neuroblastoma, the most common solid tumor of young children, frequently presents with aggressive metastatic disease and for these children the 5-year survival rates are dismal. Metastasis, the movement of cancer cells from one site to another, involves remodeling of the cytoskeleton including altered microtubule dynamics. The microtubule-destabilizing protein, stathmin, has recently been shown to mediate neuroblastoma metastasis although precise functions remain poorly defined. In this study we investigated stathmin's contribution to the metastatic process and potential mechanism(s) by which it exerts these effects. Stathmin suppression significantly reduced neuroblastoma cell invasion of 3D tumor spheroids into an extracellular matrix. Moreover, inhibiting stathmin expression significantly reduced transendothelial migration in two different neuroblastoma cell lines in vitro. Inhibition of ROCK, a key regulator of cell migration, in neuroblastoma cells highlighted that stathmin regulates transendothelial migration through ROCK signaling. Reduced stathmin expression in neuroblastoma cells significantly increased the activation of the RhoA small GTPase. Notably, re-expression of either wild type or a phospho-mimetic stathmin mutant (4E) made defective in tubulin binding returned cell migration and transendothelial migration back to control levels, indicating that stathmin may influence these processes in neuroblastoma cells independent of tubulin binding. Finally, stathmin suppression in neuroblastoma cells significantly reduced whole body, lung, kidney and liver metastases in an experimental metastases mouse model. In conclusion, stathmin suppression interferes with the metastatic process via RhoA/ROCK signaling in neuroblastoma cells. These findings highlight the importance of stathmin to the metastatic process and its potential as a therapeutic target for the treatment of neuroblastoma.


Assuntos
Neuroblastoma/patologia , Estatmina/antagonistas & inibidores , Quinases Associadas a rho/metabolismo , Proteína rhoA de Ligação ao GTP/metabolismo , Animais , Linhagem Celular Tumoral , Xenoenxertos , Humanos , Masculino , Camundongos , Camundongos SCID , Metástase Neoplásica , Neuroblastoma/metabolismo , Transdução de Sinais , Estatmina/biossíntese , Migração Transendotelial e Transepitelial , Transfecção , Tubulina (Proteína)/metabolismo
3.
Br J Pharmacol ; 171(24): 5507-23, 2014 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-24665826

RESUMO

UNLABELLED: Metastasis is responsible for the greatest number of cancer deaths. Metastatic disease, or the movement of cancer cells from one site to another, is a complex process requiring dramatic remodelling of the cell cytoskeleton. The various components of the cytoskeleton, actin (microfilaments), microtubules (MTs) and intermediate filaments, are highly integrated and their functions are well orchestrated in normal cells. In contrast, mutations and abnormal expression of cytoskeletal and cytoskeletal-associated proteins play an important role in the ability of cancer cells to resist chemotherapy and metastasize. Studies on the role of actin and its interacting partners have highlighted key signalling pathways, such as the Rho GTPases, and downstream effector proteins that, through the cytoskeleton, mediate tumour cell migration, invasion and metastasis. An emerging role for MTs in tumour cell metastasis is being unravelled and there is increasing interest in the crosstalk between key MT interacting proteins and the actin cytoskeleton, which may provide novel treatment avenues for metastatic disease. Improved understanding of how the cytoskeleton and its interacting partners influence tumour cell migration and metastasis has led to the development of novel therapeutics against aggressive and metastatic disease. LINKED ARTICLES: This article is part of a themed section on Cytoskeleton, Extracellular Matrix, Cell Migration, Wound Healing and Related Topics. To view the other articles in this section visit http://dx.doi.org/10.1111/bph.2014.171.issue-24.


Assuntos
Movimento Celular/fisiologia , Citoesqueleto/metabolismo , Invasividade Neoplásica , Metástase Neoplásica , Transdução de Sinais/fisiologia , Proteínas rho de Ligação ao GTP/metabolismo , Citoesqueleto de Actina/metabolismo , Humanos , Filamentos Intermediários/metabolismo , Microtúbulos/metabolismo
4.
Oncogene ; 33(7): 882-90, 2014 Feb 13.
Artigo em Inglês | MEDLINE | ID: mdl-23396365

RESUMO

Metastatic neuroblastoma is an aggressive childhood cancer of neural crest origin. Stathmin, a microtubule destabilizing protein, is highly expressed in neuroblastoma although its functional role in this malignancy has not been addressed. Herein, we investigate stathmin's contribution to neuroblastoma tumor growth and metastasis. Small interfering RNA (siRNA)-mediated stathmin suppression in two independent neuroblastoma cell lines, BE(2)-C and SH-SY5Y, did not markedly influence cell proliferation, viability or anchorage-independent growth. In contrast, stathmin suppression significantly reduced cell migration and invasion in both the neuroblastoma cell lines. Stathmin suppression altered neuroblastoma cell morphology and this was associated with changes in the cytoskeleton, including increased tubulin polymer levels. Stathmin suppression also modulated phosphorylation of the actin-regulatory proteins, cofilin and myosin light chain (MLC). Treatment of stathmin-suppressed neuroblastoma cells with the ROCKI and ROCKII inhibitor, Y-27632, ablated MLC phosphorylation and returned the level of cofilin phosphorylation and cell invasion back to that of untreated control cells. ROCKII inhibition (H-1152) and siRNA suppression also reduced cofilin phosphorylation in stathmin-suppressed cells, indicating that ROCKII mediates stathmin's regulation of cofilin phosphorylation. This data demonstrates a link between stathmin and the regulation of cofilin and MLC phosphorylation via ROCK. To examine stathmin's role in neuroblastoma metastasis, stathmin short hairpin RNA (shRNA)\luciferase-expressing neuroblastoma cells were injected orthotopically into severe combined immunodeficiency-Beige mice, and tumor growth monitored by bioluminescent imaging. Stathmin suppression did not influence neuroblastoma cell engraftment or tumor growth. In contrast, stathmin suppression significantly reduced neuroblastoma lung metastases by 71% (P<0.008) compared with control. This is the first study to confirm a role for stathmin in hematogenous spread using a clinically relevant orthotopic cancer model, and has identified stathmin as an important contributor of cell invasion and metastasis in neuroblastoma.


Assuntos
Neoplasias Pulmonares/metabolismo , Neuroblastoma/metabolismo , Interferência de RNA , Estatmina/genética , Fatores de Despolimerização de Actina/metabolismo , Animais , Linhagem Celular Tumoral , Movimento Celular , Proliferação de Células , Forma Celular , Sobrevivência Celular , Citoesqueleto/metabolismo , Técnicas de Silenciamento de Genes , Humanos , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/secundário , Camundongos , Invasividade Neoplásica , Transplante de Neoplasias , Neuroblastoma/genética , Neuroblastoma/secundário , Fosforilação , Processamento de Proteína Pós-Traducional , RNA Interferente Pequeno/genética , Estatmina/metabolismo , Carga Tumoral , Quinases Associadas a rho/antagonistas & inibidores , Quinases Associadas a rho/metabolismo
5.
Gut ; 55(1): 79-89, 2006 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-16043492

RESUMO

BACKGROUND AND AIMS: Activated pancreatic stellate cells (PSCs) are implicated in the production of alcohol induced pancreatic fibrosis. PSC activation is invariably associated with loss of cytoplasmic vitamin A (retinol) stores. Furthermore, retinol and ethanol are known to be metabolised by similar pathways. Our group and others have demonstrated that ethanol induced PSC activation is mediated by the mitogen activated protein kinase (MAPK) pathway but the specific role of retinol and its metabolites all-trans retinoic acid (ATRA) and 9-cis retinoic acid (9-RA) in PSC quiescence/activation, or its influence on ethanol induced PSC activation is not known. Therefore, the aims of this study were to (i) examine the effects of retinol, ATRA, and 9-RA on PSC activation; (ii) determine whether retinol, ATRA, and 9-RA influence MAPK signalling in PSCs; and (iii) assess the effect of retinol supplementation on PSCs activated by ethanol. METHODS: Cultured rat PSCs were incubated with retinol, ATRA, or 9-RA for varying time periods and assessed for: (i) proliferation; (ii) expression of alpha smooth muscle actin (alpha-SMA), collagen I, fibronectin, and laminin; and (iii) activation of MAPKs (extracellular regulated kinases 1 and 2, p38 kinase, and c-Jun N terminal kinase). The effect of retinol on PSCs treated with ethanol was also examined by incubating cells with ethanol in the presence or absence of retinol for five days, followed by assessment of alpha-SMA, collagen I, fibronectin, and laminin expression. RESULTS: Retinol, ATRA, and 9-RA significantly inhibited: (i) cell proliferation, (ii) expression of alpha-SMA, collagen I, fibronectin, and laminin, and (iii) activation of all three classes of MAPKs. Furthermore, retinol prevented ethanol induced PSC activation, as indicated by inhibition of the ethanol induced increase in alpha-SMA, collagen I, fibronectin, and laminin expression. CONCLUSIONS: Retinol and its metabolites ATRA and 9-RA induce quiescence in culture activated PSCs associated with a significant decrease in the activation of all three classes of MAPKs in PSCs. Ethanol induced PSC activation is prevented by retinol supplementation.


Assuntos
Pâncreas/efeitos dos fármacos , Vitamina A/farmacologia , Alitretinoína , Animais , Proteínas de Ciclo Celular/metabolismo , Proliferação de Células/efeitos dos fármacos , Células Cultivadas , Fosfatase 1 de Especificidade Dupla , Ativação Enzimática/efeitos dos fármacos , Inibidores Enzimáticos/farmacologia , Etanol/antagonistas & inibidores , Etanol/farmacologia , Proteínas da Matriz Extracelular/metabolismo , Fibrose , Proteínas Imediatamente Precoces/metabolismo , Proteínas Quinases Ativadas por Mitógeno/metabolismo , Pâncreas/citologia , Pâncreas/metabolismo , Pâncreas/patologia , Fosfoproteínas Fosfatases/metabolismo , Proteína Fosfatase 1 , Proteínas Tirosina Fosfatases/metabolismo , Ratos , Receptores do Ácido Retinoico/metabolismo , Receptores X de Retinoides/metabolismo , Reação em Cadeia da Polimerase Via Transcriptase Reversa/métodos , Tretinoína/farmacologia , Vanadatos/farmacologia
6.
Pancreas ; 27(2): 150-60, 2003 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-12883264

RESUMO

BACKGROUND: Pancreatic fibrosis is a characteristic feature of alcoholic chronic pancreatitis. Recent studies suggest that activated pancreatic stellate cells (PSCs) are the major cell-type involved in pancreatic fibrogenesis. Cultured PSCs become activated when exposed to ethanol or its metabolite acetaldehyde (as indicated by increased alpha-smooth muscle actin [alpha-SMA] expression and increased collagen synthesis). However the intracellular signaling mechanisms responsible for ethanol- or acetaldehyde-induced PSC activation remain to be fully elucidated. One of the major signaling pathways known to regulate protein synthesis in mammalian cells is the mitogen-activated protein kinase (MARK) pathway. AIMS: To examine the effects of ethanol and acetaldehyde on the MAPK pathway (by assessing the activities of the 3 major subfamilies (extracellular-regulated kinases 1 and 2 [ERK 1/2], JNK and p38 kinase) in PSCs and to examine the role of p38 kinase in mediating the ethanol- and acetaldehyde-induced increase in alpha-SMA expression in activated rat PSCs. METHODS: Rat PSCs were incubated with ethanol (50 mM) or acetaldehyde (200 microM) for 15 min, 30 min, 60 min, and 24 h; and activities of ERK 1/2, JNK, and p38 kinase were assessed in cell lysates using kinase assays and Western blot. In addition, rat PSCs were treated with the specific p38 MAPK inhibitor SB203580 in the presence or absence of ethanol or acetaldehyde for 24h, and activation of the downstream protein kinase MAPKAP kinase-2 (an indicator of p38 MAPK activity) was assessed by Western blot. Specific inhibitors were also used to inhibit the activity of ERK 1/2 and JNK. Following inhibition of the above signaling pathways, alpha-SMA expression by PSCs was assessed by Western blot. RESULTS: Ethanol and acetaldehyde increased the activation of all 3 subfamilies (ERK 1/2, JNK and p38 kinase) of the MAPK pathway in PSCs. Treatment of PSCs with SB203580 abolished the ethanol- and acetaldehyde-induced increase in p38 MAPK activity and also prevented the induction of alpha-SMA expression in PSCs. However, inhibition of ERK 1/2 and JNK had no effect on ethanoland acetaldehyde-induced alpha-SMA expression in PSCs. CONCLUSIONS: (1) The MAP kinase pathway is induced in PSCs after exposure to ethanol or acetaldehyde and this induction is sustained for at least 24h. (2) The p38 MAPK pathway mediates the activation (as indicated by increased alpha-SMA expression) of PSCs by ethanol or acetaldehyde.


Assuntos
Acetaldeído/farmacologia , Pâncreas/efeitos dos fármacos , Actinas/biossíntese , Animais , Células Cultivadas , Ativação Enzimática/efeitos dos fármacos , Inibidores Enzimáticos/farmacologia , Imidazóis/farmacologia , Proteínas Quinases JNK Ativadas por Mitógeno , Sistema de Sinalização das MAP Quinases/efeitos dos fármacos , Proteína Quinase 1 Ativada por Mitógeno/metabolismo , Proteína Quinase 3 Ativada por Mitógeno , Proteínas Quinases Ativadas por Mitógeno/metabolismo , Músculo Liso/química , Pâncreas/citologia , Pâncreas/metabolismo , Inibidores de Proteínas Quinases , Proteínas Quinases/metabolismo , Piridinas/farmacologia , Ratos , Fatores de Tempo , Proteínas Quinases p38 Ativadas por Mitógeno
7.
Gut ; 52(5): 677-82, 2003 May.
Artigo em Inglês | MEDLINE | ID: mdl-12692052

RESUMO

BACKGROUND: Pancreatic stellate cells (PSCs), implicated as key mediators of pancreatic fibrogenesis, are found in increased numbers in areas of pancreatic injury. This increase in PSC number may be due to increased local proliferation and/or migration of these cells from adjacent areas. The ability of PSCs to proliferate has been well established but their potential for migration has not been examined. AIMS: Therefore, the aims of this study were to determine whether cultured rat PSCs have the capacity to migrate and, if so, to characterise this migratory capacity with respect to the influence of basement membrane components and the effect of platelet derived growth factor (PDGF, a known stimulant for migration of other cell types). METHODS: Migration of freshly isolated (quiescent) and culture activated (passaged) rat PSCs was assessed across uncoated or Matrigel (a basement membrane-like substance) coated porous membranes (pore size 8 micro m) in the presence or absence of PDGF (10 and 20 ng/ml) in the culture medium. A checkerboard assay was performed to assess whether the effect of PDGF on PSC migration was chemotactic or chemokinetic. RESULTS: Cell migration was observed with both freshly isolated and passaged PSCs. However, compared with passaged (culture activated) cells, migration of freshly isolated cells was delayed, occurring only at or after 48 hours of incubation when the cells displayed an activated phenotype. PSC migration through Matrigel coated membranes was delayed but not prevented by basement membrane components. PSC migration was increased by PDGF and this effect was predominantly chemotactic (that is, in the direction of a positive concentration gradient). CONCLUSIONS: (i) PSCs have the capacity to migrate. (ii) Activation of PSCs appears to be a prerequisite for migration. (iii) PDGF stimulates PSC migration and this effect is predominantly chemotactic. IMPLICATION: Chemotactic factors released during pancreatic injury may stimulate the migration of PSCs through surrounding basement membrane towards affected areas of the gland.


Assuntos
Movimento Celular/fisiologia , Pâncreas/citologia , Animais , Membrana Basal/metabolismo , Materiais Biocompatíveis/farmacologia , Divisão Celular/fisiologia , Movimento Celular/efeitos dos fármacos , Células Cultivadas/fisiologia , Quimiotaxia/fisiologia , Colágeno/farmacologia , Combinação de Medicamentos , Laminina/farmacologia , Fator de Crescimento Derivado de Plaquetas/farmacologia , Proteoglicanas/farmacologia , Ratos
8.
Gut ; 52(2): 275-82, 2003 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-12524413

RESUMO

BACKGROUND: Pancreatic fibrosis is a characteristic feature of chronic pancreatic injury and is thought to result from a change in the balance between synthesis and degradation of extracellular matrix (ECM) proteins. Recent studies suggest that activated pancreatic stellate cells (PSCs) play a central role in pancreatic fibrogenesis via increased synthesis of ECM proteins. However, the role of these cells in ECM protein degradation has not been fully elucidated. AIMS: To determine: (i) whether PSCs secrete matrix metalloproteinases (MMPs) and tissue inhibitors of metalloproteinases (TIMPs) and, if so (ii) whether MMP and TIMP secretion by PSCs is altered in response to known PSC activating factors such as tumour necrosis factor alpha (TNF-alpha), transforming growth factor beta1 (TGF-beta1), interleukin 6 (IL-6), ethanol, and acetaldehyde. METHODS: Cultured rat PSCs (n=3-5 separate cell preparations) were incubated at 37 degrees C for 24 hours with serum free culture medium containing TNF-alpha (5-25 U/ml), TGF-beta1 (0.5-1 ng/ml), IL-6 (0.001-10 ng/ml), ethanol (10-50 mM), or acetaldehyde (150-200 micro M), or no additions (controls). Medium from control cells was examined for the presence of MMPs by zymography using a 10% polyacrylamide-0.1% gelatin gel. Reverse transcriptase-polymerase chain reaction (RT-PCR) was used to examine gene expression of MMP9 and the tissue inhibitors of metalloproteinases TIMP1 and TIMP2. Western blotting was used to identify a specific MMP, MMP2 (a gelatinase that digests basement membrane collagen and the dominant MMP observed on zymography) and a specific TIMP, TIMP2. Reverse zymography was used to examine functional TIMPs in PSC secretions. The effect of TNF-alpha, TGF-beta1, and IL-6 on MMP2 secretion was assessed by densitometry of western blots. The effect of ethanol and acetaldehyde on MMP2 and TIMP2 secretion was also assessed by this method. RESULTS: Zymography revealed that PSCs secrete a number of MMPs including proteinases with molecular weights consistent with MMP2, MMP9, and MMP13. RT-PCR demonstrated the presence of mRNA for metalloproteinase inhibitors TIMP1 and TIMP2 in PSCs while reverse zymography revealed the presence of functional TIMP2 in PSC secretions. MMP2 secretion by PSCs was significantly increased by TGF-beta1 and IL-6, but was not affected by TNF-alpha. Ethanol and acetaldehyde induced secretion of both MMP2 and TIMP2 by PSCs. CONCLUSIONS: Pancreatic stellate cells have the capacity to synthesise a number of matrix metalloproteinases, including MMP2, MMP9, and MMP13 and their inhibitors TIMP1 and TIMP2. MMP2 secretion by PSCs is significantly increased on exposure to the proinflammatory cytokines TGF-beta1 and IL-6. Both ethanol and its metabolite acetaldehyde increase MMP2 as well as TIMP2 secretion by PSCs. IMPLICATION: The role of pancreatic stellate cells in extracellular matrix formation and fibrogenesis may be related to their capacity to regulate the degradation as well as the synthesis of extracellular matrix proteins.


Assuntos
Metaloproteinases da Matriz/biossíntese , Pâncreas/enzimologia , Inibidores Teciduais de Metaloproteinases/biossíntese , Acetaldeído/farmacologia , Animais , Western Blotting/métodos , Células Cultivadas , Eletroforese em Gel de Poliacrilamida/métodos , Etanol/farmacologia , Interleucina-6/farmacologia , Metaloproteinase 2 da Matriz/análise , Metaloproteinase 2 da Matriz/biossíntese , Metaloproteinase 9 da Matriz/análise , Metaloproteinase 9 da Matriz/biossíntese , Metaloproteinases da Matriz/análise , Pâncreas/citologia , Pâncreas/efeitos dos fármacos , RNA Mensageiro/análise , Ratos , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Inibidor Tecidual de Metaloproteinase-1/análise , Inibidor Tecidual de Metaloproteinase-1/biossíntese , Inibidor Tecidual de Metaloproteinase-2/análise , Inibidor Tecidual de Metaloproteinase-2/biossíntese , Fator de Crescimento Transformador beta/farmacologia , Fator de Crescimento Transformador beta1 , Fator de Necrose Tumoral alfa/farmacologia
9.
Pancreas ; 29(3): 179-87, 2004 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-15367883

RESUMO

OBJECTIVES: Pancreatic cancer has a very poor prognosis, largely due to its propensity for early local and distant spread. Histopathologically, most pancreatic cancers are characterized by a prominent stromal/fibrous reaction in and around tumor tissue. The aims of this study were to determine whether (1) the cells responsible for the formation of the stromal reaction in human pancreatic cancers are activated pancreatic stellate cells (PSCs) and (2) an interaction exists between pancreatic cancer cells and PSCs that may facilitate local and distant invasion of tumor. METHODS: Serial sections of human pancreatic cancer tissue were stained for desmin and glial fibrillary acidic protein (stellate cell selective markers) and alpha-smooth muscle actin (alphaSMA), a marker of activated PSC activation, by immunohistochemistry, and for collagen using Sirius Red. Correlation between the extent of positive staining for collagen and alphaSMA was assessed by morphometry. The cellular source of collagen in stromal areas was identified using dual staining methodology, ie, immunostaining for alphaSMA and in situ hybridization for procollagen alpha1I mRNA. The possible interaction between pancreatic cancer cells and PSCs was assessed in vitro by exposing cultured rat PSCs to control medium or conditioned medium from 2 pancreatic cancer cell lines (PANC-1 and MiaPaCa-2) for 24 hours. PSC activation was assessed by cell proliferation and alphaSMA expression. RESULTS: Stromal areas of human pancreatic cancer stained strongly positive for the stellate cell selective markers desmin and GFAP (indicating the presence of PSCs), for alphaSMA (suggesting that the PSCs were in their activated state) and for collagen. Morphometric analysis demonstrated a close correlation (r = 0.77; P < 0.04; 8 paired sections) between the extent of PSC activation and collagen deposition. Procollagen mRNA expression was localized to alphaSMA-positive cells in stromal areas indicating that activated PSCs were the predominant source of collagen in stromal areas. Exposure of PSCs to pancreatic cancer cell secretions in vitro resulted in PSC activation as indicated by significantly increased cell proliferation and alphaSMA expression. CONCLUSIONS: Activated PSCs are present in the stromal reaction in pancreatic cancers and are responsible for the production of stromal collagen. PSC function is influenced by pancreatic cancer cells. Interactions between tumor cells and stromal cells (PSCs) may play an important role in the pathobiology of pancreatic cancer.


Assuntos
Neoplasias Pancreáticas/patologia , Células Estromais/patologia , Actinas/análise , Actinas/biossíntese , Animais , Biomarcadores Tumorais/análise , Divisão Celular/efeitos dos fármacos , Linhagem Celular Tumoral/metabolismo , Células Cultivadas/efeitos dos fármacos , Colágeno/análise , Meios de Cultivo Condicionados/farmacologia , Desmina/análise , Proteína Glial Fibrilar Ácida/análise , Humanos , Invasividade Neoplásica , Proteínas de Neoplasias/análise , Pâncreas/citologia , Neoplasias Pancreáticas/química , RNA Mensageiro/análise , Ratos , Células Estromais/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA