Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
1.
Rev Fish Biol Fish ; 32(1): 253-270, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-33456210

RESUMO

Ocean governance is complex and influenced by multiple drivers and actors with different worldviews and goals. While governance encompasses many elements, in this paper we focus on the processes that operate within and between states, civil society and local communities, and the market, including industry. Specifically, in this paper, we address the question of how to move towards more sustainable ocean governance aligning with the sustainable development goals (SDGs) and the UN Ocean Decade. We address three major risks to oceans that arise from governance-related issues: (1) the impacts of the overexploitation of marine resources; (2) inequitable distribution of access to and benefits from marine ecosystem services, and (3) inadequate or inappropriate adaptation to changing ocean conditions. The SDGs have been used as an underlying framework to develop these risks. We identify five drivers that may determine how ocean governance evolves, namely formal rules and institutions, evidence and knowledge-based decision-making, legitimacy of decision-making institutions, stakeholder engagement and participation, and empowering communities. These drivers were used to define two alternative futures by 2030: (a) 'Business as Usual'-a continuation of current trajectories and (b) 'More Sustainable Future'-optimistic, transformational, but technically achievable. We then identify what actions, as structured processes, can reduce the three major governance-related risks and lead to the More Sustainable Future. These actions relate to the process of co-creation and implementation of improved, comprehensive, and integrated management plans, enhancement of decision-making processes, and better anticipation and consideration of ambiguity and uncertainty. Supplementary information: The online version of this article (10.1007/s11160-020-09631-x) contains supplementary material, which is available to authorized users.

2.
Rev Fish Biol Fish ; 32(1): 39-63, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-34566277

RESUMO

Proactive and coordinated action to mitigate and adapt to climate change will be essential for achieving the healthy, resilient, safe, sustainably harvested and biodiverse ocean that the UN Decade of Ocean Science and sustainable development goals (SDGs) seek. Ocean-based mitigation actions could contribute 12% of the emissions reductions required by 2030 to keep warming to less than 1.5 ºC but, because substantial warming is already locked in, extensive adaptation action is also needed. Here, as part of the Future Seas project, we use a "foresighting/hindcasting" technique to describe two scenarios for 2030 in the context of climate change mitigation and adaptation for ocean systems. The "business-as-usual" future is expected if current trends continue, while an alternative future could be realised if society were to effectively use available data and knowledge to push as far as possible towards achieving the UN SDGs. We identify three drivers that differentiate between these alternative futures: (i) appetite for climate action, (ii) handling extreme events, and (iii) climate interventions. Actions that could navigate towards the optimistic, sustainable and technically achievable future include:(i)proactive creation and enhancement of economic incentives for mitigation and adaptation;(ii)supporting the proliferation of local initiatives to spur a global transformation;(iii)enhancing proactive coastal adaptation management;(iv)investing in research to support adaptation to emerging risks;(v)deploying marine-based renewable energy;(vi)deploying marine-based negative emissions technologies;(vii)developing and assessing solar radiation management approaches; and(viii)deploying appropriate solar radiation management approaches to help safeguard critical ecosystems. Supplementary Information: The online version contains supplementary material available at 10.1007/s11160-021-09678-4.

4.
Front Ecol Evol ; 72019 Oct 25.
Artigo em Inglês | MEDLINE | ID: mdl-33748149

RESUMO

Around the globe, coastal communities are increasingly coping with changing environmental conditions as a result of climate change and ocean acidification, including sea level rise, more severe storms, and decreasing natural resources and ecosystem services. A natural adaptation response is to engineer the coast in a perilous and often doomed attempt to preserve the status quo. In the long term, however, most coastal nations will need to transition to approaches based on ecological resilience-that is, to coastal zone management that allows coastal communities to absorb and adapt to change rather than to resist it-and the law will be critical in facilitating this transition. Researchers are increasingly illuminating law's ability to promote social-ecological resilience to a changing world, but this scholarship-mostly focused on U.S. law-has not yet embraced its potential role in helping to create new international norms for social-ecological resilience. Through its comparison of coastal zone management in Australia, Finland, and the Netherlands, this article demonstrates that a comparative law approach offers a fruitful expansion of law-and-resilience research, both by extending this research to other countries and, more importantly, by allowing scholars to identify critical variables, or variable constellations associated with countries' decisions to adopt laws designed to promote social-ecological resilience and to identify mechanisms that allow for a smoother transition to this approach. For example, our comparison demonstrates, among other things, that countries can adopt coastal zone management techniques that integrate social-ecological resilience without fully abandoning more traditional engineering approaches to adapt to environmental change and its impacts.

5.
Biol Rev Camb Philos Soc ; 93(1): 284-305, 2018 02.
Artigo em Inglês | MEDLINE | ID: mdl-28568902

RESUMO

Climate change is driving a pervasive global redistribution of the planet's species. Species redistribution poses new questions for the study of ecosystems, conservation science and human societies that require a coordinated and integrated approach. Here we review recent progress, key gaps and strategic directions in this nascent research area, emphasising emerging themes in species redistribution biology, the importance of understanding underlying drivers and the need to anticipate novel outcomes of changes in species ranges. We highlight that species redistribution has manifest implications across multiple temporal and spatial scales and from genes to ecosystems. Understanding range shifts from ecological, physiological, genetic and biogeographical perspectives is essential for informing changing paradigms in conservation science and for designing conservation strategies that incorporate changing population connectivity and advance adaptation to climate change. Species redistributions present challenges for human well-being, environmental management and sustainable development. By synthesising recent approaches, theories and tools, our review establishes an interdisciplinary foundation for the development of future research on species redistribution. Specifically, we demonstrate how ecological, conservation and social research on species redistribution can best be achieved by working across disciplinary boundaries to develop and implement solutions to climate change challenges. Future studies should therefore integrate existing and complementary scientific frameworks while incorporating social science and human-centred approaches. Finally, we emphasise that the best science will not be useful unless more scientists engage with managers, policy makers and the public to develop responsible and socially acceptable options for the global challenges arising from species redistributions.


Assuntos
Mudança Climática , Conservação dos Recursos Naturais/métodos , Ecologia/métodos , Ciências Sociais/métodos , Animais , Humanos , Especificidade da Espécie
6.
Science ; 355(6332)2017 03 31.
Artigo em Inglês | MEDLINE | ID: mdl-28360268

RESUMO

Distributions of Earth's species are changing at accelerating rates, increasingly driven by human-mediated climate change. Such changes are already altering the composition of ecological communities, but beyond conservation of natural systems, how and why does this matter? We review evidence that climate-driven species redistribution at regional to global scales affects ecosystem functioning, human well-being, and the dynamics of climate change itself. Production of natural resources required for food security, patterns of disease transmission, and processes of carbon sequestration are all altered by changes in species distribution. Consideration of these effects of biodiversity redistribution is critical yet lacking in most mitigation and adaptation strategies, including the United Nation's Sustainable Development Goals.


Assuntos
Biodiversidade , Mudança Climática , Animais , Abastecimento de Alimentos , Saúde , Humanos
7.
Arch Surg ; 139(2): 131-6, 2004 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-14769568

RESUMO

HYPOTHESIS: The success of an educational program in July 1999 that lowered the catheter-related bloodstream infection (CRBSI) rate in our intensive care unit (ICU) 3-fold is correlated with compliance with "best-practice" behaviors. DESIGN: Before-after trial. SETTING: Surgical ICU in a referral hospital. PATIENTS: A random sample underwent bedside audits of central venous catheter care (n = 187). All ICU admissions during a 39-month period (N = 4489) were prospectively followed for bacteremia. INTERVENTIONS: On the basis of audit results in December 2000, a behavioral intervention was designed to improve compliance with evidenced-based guidelines of central venous catheter management. MAIN OUTCOME MEASURES: Compliance with practices known to decrease CRBSI. Secondary outcome was CRBSI rate on all ICU patients. RESULTS: Multiple deficiencies were identified on bedside audits 18 months after the previous educational program. After the implementation of a separate behavioral intervention in July 2001, a second set of bedside audits in December 2001 demonstrated improvements in documenting the dressing date (11% to 21%; P<.001) and stopcock use (70% to 24%; P<.001), whereas nonsignificant trends were observed in hand hygiene (17% to 30%; P>.99) and maximal sterile barrier precautions (50% to 80%; P =.29). Appropriate practice was observed before and after the behavioral intervention in catheter site placement, dressing type, absence of antibiotic ointment, and proper securing of central venous catheters. Thirty-two CRBSIs occurred in 9353 catheter-days 24 months before the behavioral intervention compared with 17 CRBSIs in 6152 catheter-days during the 15 months after the intervention (3.4/1000 to 2.8/1000 catheter-days; P =.40). CONCLUSIONS: Although a previous educational program decreased the CRBSI rate, this was associated with only modest compliance with best practice principles when bedside audits were performed 18 months later. A behavioral intervention improved all identified deficiencies, leading to a nonsignificant decrease in CRBSIs.


Assuntos
Bacteriemia/prevenção & controle , Patógenos Transmitidos pelo Sangue/isolamento & purificação , Cateteres de Demora/efeitos adversos , Contaminação de Equipamentos/prevenção & controle , Unidades de Terapia Intensiva/normas , Sistemas Automatizados de Assistência Junto ao Leito , Adulto , Distribuição por Idade , Idoso , Atitude do Pessoal de Saúde , Bacteriemia/epidemiologia , Bacteriemia/etiologia , Bacteriemia/microbiologia , Cateteres de Demora/microbiologia , Estudos de Coortes , Estudos Controlados Antes e Depois , Infecção Hospitalar/prevenção & controle , Educação Médica Continuada/organização & administração , Educação Continuada em Enfermagem/organização & administração , Feminino , Seguimentos , Humanos , Incidência , Masculino , Pessoa de Meia-Idade , Probabilidade , Estudos Prospectivos , Valores de Referência , Medição de Risco , Distribuição por Sexo , Estatísticas não Paramétricas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA