Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 130
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Phys Rev Lett ; 132(23): 235102, 2024 Jun 07.
Artigo em Inglês | MEDLINE | ID: mdl-38905687

RESUMO

Multimachine empirical scaling predicts an extremely narrow heat exhaust layer in future high magnetic field tokamaks, producing high power densities that require mitigation. In the experiments presented, the width of this exhaust layer is nearly doubled using actuators to increase turbulent transport in the plasma edge. This is achieved in low collisionality, high confinement edge pedestals with their gradients limited by turbulent transport instead of large-scale, coherent instabilities. The exhaust heat flux profile width and divertor leg diffusive spreading both double as a high frequency band of turbulent fluctuations propagating in the electron diamagnetic direction doubles in amplitude. The results are quantitatively reproduced in electromagnetic XGC particle-in-cell simulations which show the heat flux carried by electrons emerges to broaden the heat flux profile, directly supported by Langmuir probe measurements.

2.
Philos Trans A Math Phys Eng Sci ; 381(2242): 20210240, 2023 Feb 20.
Artigo em Inglês | MEDLINE | ID: mdl-36587824

RESUMO

The L-H transition power threshold (PLH) in favourable magnetic geometry (ion ∇B drift pointing towards X-point) is much lower than in the unfavourable magnetic geometry (ion ∇B drift pointing away from X-point) on multiple tokamaks. In a systematic experiment on DIII-D, the ion ∇B drift direction was changed continuously from the unfavourable to favourable configuration during plasma discharges. During such process, the input neutral beam power was kept constant at a value that was above PLH for favourable configuration, but lower than PLH for unfavourable configuration. Toroidal field and plasma current were also kept constant and there was little change in the edge electron density ne and electron temperature Te profiles. The density fluctuation amplitude was reduced approaching the transition, while a large increase of turbulence Reynolds stress and flow shear were simultaneously observed. The turbulence decorrelation rate was found to increase as the ion ∇B drift direction was moving towards the favourable configuration, but the flow shear also increased and exceeded the turbulence decorrelation rate. These measurements demonstrate an important correlation between turbulence and turbulence-driven flow and a lowering of PLH, provide insights into the underlyingphysics behind the hidden parameters and inform a more complete physics-based model of the L-H transition power threshold. This article is part of a discussion meeting issue 'H-mode transition and pedestal studies in fusion plasmas'.

3.
Phys Rev Lett ; 128(18): 185001, 2022 May 06.
Artigo em Inglês | MEDLINE | ID: mdl-35594094

RESUMO

Global gyrokinetic simulations of mesoscale reversed shear Alfven eigenmodes (RSAE) excited by energetic particles (EP) in fusion plasmas find that RSAE amplitude and EP transport are much higher than experimental levels at nonlinear saturation, but quickly diminish to very low levels after the saturation if background microturbulence is artificially suppressed. In contrast, in simulations coupling micro-meso scales, the RSAE amplitude and EP transport decrease drastically at the initial saturation but later increases to the experimental levels in the quasisteady state with bursty dynamics due to regulation by thermal ion temperature gradient (ITG) microturbulence. The quasisteady state EP transport is larger for a stronger microturbulence. The RSAE amplitude in the quasisteady state ITG-RSAE turbulence from gyrokinetic simulations, for the first time, agrees very well with experimental measurements.

4.
Phys Rev Lett ; 127(23): 235002, 2021 Dec 03.
Artigo em Inglês | MEDLINE | ID: mdl-34936805

RESUMO

Fast ion phase-space flow, driven by Alfvén eigenmodes (AEs), is measured by an imaging neutral particle analyzer in the DIII-D tokamak. The flow firstly appears near the minimum safety factor at the injection energy of neutral beams, and then moves radially inward and outward by gaining and losing energy, respectively. The flow trajectories in phase space align well with the intersection lines of the constant magnetic moment surfaces and constant E-(ω/n)P_{ζ} surfaces, where E, P_{ζ} are the energy and canonical toroidal momentum of ions; ω and n are angular frequencies and toroidal mode numbers of AEs. It is found that the flow is so destructive that the thermalization of fast ions is no longer observed in regions of strong interaction. The measured phase-space flow is consistent with nonlinear hybrid kinetic-magnetohydrodynamics simulation. Calculations of the relatively narrow phase-space islands reveal that fast ions must transition between different flow trajectories to experience large-scale phase-space transport.

5.
Appl Opt ; 60(16): 4885-4891, 2021 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-34143050

RESUMO

High resolution luminosity product measurements of neutral beam emission in magnetized plasmas are severely limited by the artificial Doppler broadening inherent to the use of large diameter collection optics. In this paper, a broadening compensation method is developed for the spatial heterodyne spectroscopy interferometric technique. The compensation technique greatly reduces the artificial broadening, thereby enabling high resolution measurements at a significantly higher photon flux than previously available. Compensated and uncompensated measurements of emission generated by impact excitation of 61 keV deuterium neutrals in a tokamak plasma at the DIII-D National Fusion Facility are presented. The spectral width of the compensated measurement is ${\sim}0.13 \;{\rm{nm}}$, which is comparable to the instrument resolution. This width is ${\sim}4 \times$ smaller than the uncompensated width, which for the 20 cm diameter collection lens system utilized in this study is ${\sim}0.5 \;{\rm{nm}}$.

6.
Phys Rev Lett ; 123(11): 115001, 2019 Sep 13.
Artigo em Inglês | MEDLINE | ID: mdl-31573275

RESUMO

We observe the formation of a high-pressure staircase pedestal (≈16-20 kPa) in the DIII-D tokamak when large amplitude edge localized modes are suppressed using resonant magnetic perturbations. The staircase pedestal is characterized by a flattening of the density and temperature profiles in midpedestal creating a two-step staircase pedestal structure correlated with the appearance of midpedestal broadband fluctuations. The pedestal oscillates between the staircase and single-step structure every 40-60 ms, correlated with oscillations in the heat and particle flux to the divertor. Gyrokinetic analysis using the cgyro code shows that when the heat and particle flux to the divertor decreases, the pedestal broadens and the E×B shear at the midpedestal decreases, triggering a transport bifurcation from the kinetic ballooning mode (KBM) to trapped electron mode (TEM) limited transport that flattens the density and temperature profiles at midpedestal and results in the formation of the staircase pedestal. As the heat flux to the divertor increases, the pedestal narrows and the E×B shear at the midpedestal increases, triggering a back transition from TEM to KBM limited transport. The pedestal pressure increases during the staircase phase, indicating that enhanced midpedestal turbulence can be beneficial for confinement.

7.
Phys Rev Lett ; 122(11): 115001, 2019 Mar 22.
Artigo em Inglês | MEDLINE | ID: mdl-30951344

RESUMO

Plasma discharges with a negative triangularity (δ=-0.4) shape have been created in the DIII-D tokamak with a significant normalized beta (ß_{N}=2.7) and confinement characteristic of the high confinement mode (H_{98y2}=1.2) despite the absence of an edge pressure pedestal and no edge localized modes (ELMs). These inner-wall-limited plasmas have a similar global performance as a positive triangularity (δ=+0.4) ELMing H-mode discharge with the same plasma current, elongation and cross sectional area. For cases both of dominant electron cyclotron heating with T_{e}/T_{i}>1 and dominant neutral beam injection heating with T_{e}/T_{i}=1, turbulent fluctuations over radii 0.5<ρ<0.9 were reduced by 10-50% in the negative triangularity shape compared to the matching positive triangularity shape, depending on the radius and conditions.

8.
Phys Rev Lett ; 120(24): 245001, 2018 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-29956950

RESUMO

The hysteresis relation between turbulence and temperature modulation during the heat pulse propagation into a magnetic island is studied for the first time in toroidal plasmas. Lissajous curves of the density fluctuation (n[over ˜]/n) and the electron temperature (T_{e}) modulation show that the (n[over ˜]/n) propagation is faster than the heat pulse propagation near the O point of the magnetic island. This faster n[over ˜]/n propagation is experimental evidence of the turbulence spreading from the X point to the O point of the magnetic island.

9.
Phys Rev Lett ; 121(23): 235001, 2018 Dec 07.
Artigo em Inglês | MEDLINE | ID: mdl-30576208

RESUMO

Prior to eruptive events such as edge localized modes (ELMs), quasicoherent fluctuations, referred to as pedestal modes, are observed in the edge of fusion devices. We report on the investigations of nonlinear coupling between these modes during quasistationary inter-ELM phases leading to the ELM onset. Three dominant modes, with density and magnetic signatures, are identified as key players in the triggering mechanism of certain classes of ELMs. We demonstrate that one of these modes is amplified by the two others through three wave interactions. The amplified mode is radially shifted relative to the other two modes towards the last-closed flux surface as the ELM event approaches. Our results suggest that nonlinear coupling of pedestal modes, associated with radial distortions pushing out of the pedestal, is a possible mechanism for the triggering of low frequency ELMs relevant for future fusion devices.

10.
Phys Rev Lett ; 116(21): 215001, 2016 May 27.
Artigo em Inglês | MEDLINE | ID: mdl-27284662

RESUMO

We report the first observation of localized modulation of turbulent density fluctuations n[over ˜] (via beam emission spectroscopy) by neoclassical tearing modes (NTMs) in the core of the DIII-D tokamak. NTMs are important as they often lead to severe degradation of plasma confinement and disruptions in high-confinement fusion experiments. Magnetic islands associated with NTMs significantly modify the profiles and turbulence drives. In this experiment n[over ˜] was found to be modulated by 14% across the island. Gyrokinetic simulations suggest that n[over ˜] could be dominantly driven by the ion temperature gradient instability.

11.
Phys Rev Lett ; 117(13): 135001, 2016 Sep 23.
Artigo em Inglês | MEDLINE | ID: mdl-27715095

RESUMO

New evidence indicates that there is significant 3D variation in density fluctuations near the boundary of weakly 3D tokamak plasmas when resonant magnetic perturbations are applied to suppress transient edge instabilities. The increase in fluctuations is concomitant with an increase in the measured density gradient, suggesting that this toroidally localized gradient increase could be a mechanism for turbulence destabilization in localized flux tubes. Two-fluid magnetohydrodynamic simulations find that, although changes to the magnetic field topology are small, there is a significant 3D variation of the density gradient within the flux surfaces that is extended along field lines. This modeling agrees qualitatively with the measurements. The observed gradient and fluctuation asymmetries are proposed as a mechanism by which global profile gradients in the pedestal could be relaxed due to a local change in the 3D equilibrium. These processes may play an important role in pedestal and scrape-off layer transport in ITER and other future tokamak devices with small applied 3D fields.

12.
Phys Rev Lett ; 114(10): 105002, 2015 Mar 13.
Artigo em Inglês | MEDLINE | ID: mdl-25815938

RESUMO

Rapid bifurcations in the plasma response to slowly varying n=2 magnetic fields are observed as the plasma transitions into and out of edge-localized mode (ELM) suppression. The rapid transition to ELM suppression is characterized by an increase in the toroidal rotation and a reduction in the electron pressure gradient at the top of the pedestal that reduces the perpendicular electron flow there to near zero. These events occur simultaneously with an increase in the inner-wall magnetic response. These observations are consistent with strong resonant field penetration of n=2 fields at the onset of ELM suppression, based on extended MHD simulations using measured plasma profiles. Spontaneous transitions into (and out of) ELM suppression with a static applied n=2 field indicate competing mechanisms of screening and penetration of resonant fields near threshold conditions. Magnetic measurements reveal evidence for the unlocking and rotation of tearinglike structures as the plasma transitions out of ELM suppression.

13.
Phys Rev Lett ; 112(12): 125002, 2014 Mar 28.
Artigo em Inglês | MEDLINE | ID: mdl-24724655

RESUMO

Comprehensive 2D turbulence and eddy flow velocity measurements on DIII-D demonstrate a rapidly increasing turbulence-driven shear flow that develops ∼100 µs prior to the low-confinement (L mode) to high-confinement (H mode) transition and appears to trigger it. These changes are localized to a narrow layer 1-2 cm inside the magnetic boundary. Increasing heating power increases the Reynolds stress, the energy transfer from turbulence to the poloidal flow, and the edge flow shearing rate that then exceeds the decorrelation rate, suppressing turbulence and triggering the transition.

14.
Phys Rev Lett ; 113(13): 135001, 2014 Sep 26.
Artigo em Inglês | MEDLINE | ID: mdl-25302895

RESUMO

A path to a new high performance regime has been discovered in tokamaks that could improve the attractiveness of a fusion reactor. Experiments on DIII-D using a quiescent H-mode edge have navigated a valley of improved edge peeling-ballooning stability that opens up with strong plasma shaping at high density, leading to a doubling of the edge pressure over the standard H mode with edge localized modes at these parameters. The thermal energy confinement time increases as a result of both the increased pedestal height and improvements in the core transport and reduced low-k turbulence. Calculations of the pedestal height and width as a function of density using constraints imposed by peeling-ballooning and kinetic-ballooning theory are in quantitative agreement with the measurements.

15.
Phys Rev Lett ; 110(4): 045003, 2013 Jan 25.
Artigo em Inglês | MEDLINE | ID: mdl-25166172

RESUMO

A critical gradient threshold has been observed for the first time in a systematic, controlled experiment for a locally measured turbulent quantity in the core of a confined high-temperature plasma. In an experiment in the DIII-D tokamak where L(T(e))(-1) = |∇T(e)|/T(e) and toroidal rotation were varied, long wavelength (k(θ)ρ(s) ≲ 0.4) electron temperature fluctuations exhibit a threshold in L(T(e))(-1): below, they change little; above, they steadily increase. The increase in δT(e)/T(e) is concurrent with increased electron heat flux and transport stiffness. Observations were insensitive to rotation. Accumulated evidence strongly enforces the identification of the experimentally observed threshold with ∇T(e)-driven trapped electron mode turbulence.

16.
Rev Sci Instrum ; 94(3): 033504, 2023 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-37012775

RESUMO

A novel spectroscopy diagnostic for measuring internal magnetic fields in high temperature magnetized plasmas has been developed. It involves spectrally resolving the Balmer-α (656 nm) neutral beam radiation split by the motional Stark effect with a spatial heterodyne spectrometer (SHS). The unique combination of high optical throughput (3.7 mm2sr) and spectral resolution (δλ ∼ 0.1 nm) allows these measurements to be made with time resolution ≪1 ms. The high throughput is effectively utilized by incorporating a novel geometric Doppler broadening compensation technique in the spectrometer. The technique significantly reduces the spectral resolution penalty inherent to using large area, high-throughput optics while still collecting the large photon flux provided by such optics. In this work, fluxes of order 1010 s-1 support the measurement of deviations of <5 mT (ΔλStark ∼ 10-4 nm) in the local magnetic field with 50 µs time resolution. Example high time resolution measurements of the pedestal magnetic field throughout the ELM cycle of a DIII-D tokamak plasma are presented. Local magnetic field measurements give access to the dynamics of the edge current density, which is essential to understanding stability limits, edge localized mode generation and suppression, and predicting performance of H-mode tokamaks.

17.
Phys Rev Lett ; 109(24): 245001, 2012 Dec 14.
Artigo em Inglês | MEDLINE | ID: mdl-23368331

RESUMO

It is planned to use external magnetic perturbations at acoustic frequencies at the DIII-D tokamak to attempt to drive geodesic acoustic modes (GAM) to modify the turbulent transport. We show that this might not only be possible--despite the well-known electrostatic nature of the GAMs--but might be a viable and efficient method to generate GAMs in magnetically confined plasmas, by developing an elegant analytic method which allows us to couple numerical dynamic equilibrium calculations with massively parallel non-Boussinesq turbulence code runs and yields practical estimates of the effectivity of the method.

18.
Haemophilia ; 18(6): 875-80, 2012 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-22681411

RESUMO

It has long been advocated that patient input in service quality development is essential. We have developed a model of quality evaluation and improvement within a comprehensive haemophilia service, and describe the issues and improvements that resulted from the process. The project utilized an action research methodology. Seven patients were recruited from the haemophilia service for the initial focus groups. The main themes initially explored were as follows: patient experience of the outpatient, inpatient and weekend services and provision of information. The focus group data were analysed using basic content analysis. The main themes the initial focus group identified were the need to optimize the annual review, emergency care and inpatient facilities. Following this, the haemophilia care team worked on improving these issues. At the second focus group the patients contributed at a higher level - patient participation. Patients assisted in addressing outstanding issues such as ID alert card content and the algorithm of care for emergency services. Finally, a patient panel was developed and the relationship became one of direct negotiation and partnership with the haemophilia team to address issues within the service. The expectations and needs of patients attending the haemophilia comprehensive care service are complex. The process of including patients as partners at the highest level of patient involvement evolved and proved an effective method of service evaluation and development, facilitating lateral decision-making, not only improving care directly, but also improving the user experience.


Assuntos
Participação do Paciente/psicologia , Melhoria de Qualidade , Transtornos Herdados da Coagulação Sanguínea/terapia , Serviços Médicos de Emergência , Grupos Focais , Administração de Serviços de Saúde , Humanos , Relações Profissional-Paciente , Desenvolvimento de Programas
19.
Rev Sci Instrum ; 93(11): 113546, 2022 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-36461451

RESUMO

A novel Motional Stark Effect spectroscopy system has been designed for application at the DIII-D tokamak. The system is optimized for studies of the poloidal and toroidal magnetic field in the plasma pedestal region with frame rates of up to 10 kHz. Light from an existing high-photon-throughput collection lens is analyzed using four single-channel f/2.8 Czerny-Turner spectrometers that use custom-made lens systems instead of mirrors. Each spectrometer has two separate outgoing legs and is operated in a positive grating order, which allows for simultaneous observations of D-alpha and D-beta spectra. Forward modeling using the code FIDASIM shows a radial resolution of the system close to 0.6 cm and sufficiently good spectral resolution when masking the high throughput light collection lens in the horizontal direction to avoid overly strong Doppler broadening of beam emission lines. Moreover, a detailed sensitivity study considering realistic levels of readout and photon noise shows that the poloidal and toroidal magnetic field strengths can be inferred with an uncertainty of less than 1%, which will allow the inference of changes of the plasma current during transient events.

20.
Rev Sci Instrum ; 93(10): 103535, 2022 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-36319390

RESUMO

Two newly developed, eight-channel, integrated Beam Emission Spectroscopy (BES) detectors have been installed at Huan-Liuqi-2A tokamak, which extends the existing 16 single-channel modular BES system with additional 16 spatial channels. The BES collects the Doppler-shifted Balmer Dα emission with a spatial resolution of 1 cm (radial) × 1.5 cm (poloidal) and a temporal resolution of 0.5 µs to measure long-wavelength (k⊥ρi < 1) density fluctuations. Compared to the modular BES, the dark noise of the integrated BES is reduced by 50%-60% on average. The signal-to-noise ratio of the integrated BES system is optimized by the high light throughput front-end optics, high quantum efficiency photodiodes, high-gain, low-noise preamplifiers, and sufficient cooling capacity provided by the thermoelectric cooling (TEC) units that maintain the detectors at -20 °C. Crosstalk between channels that share the same optical system is found to be negligible. High-quality density fluctuation data enables 2D (radial-poloidal) imaging of turbulence, which allows for multi-channel spectral analysis, multi-channel cross-correlation analysis and velocimetry analysis. Preliminary results show that BES successfully captures the spatiotemporal features of the local turbulence and obtains statistically consistent turbulence characterization results.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA