Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Assunto da revista
País de afiliação
Intervalo de ano de publicação
1.
J Clin Microbiol ; 61(7): e0318920, 2023 07 20.
Artigo em Inglês | MEDLINE | ID: mdl-37070976

RESUMO

COVID-19 has brought unprecedented challenges to clinical and public health laboratories. While U.S. laboratories have continued striving to provide quality test results during the pandemic, the uncertainty and lack of supplies became a significant hurdle, hindering day-to-day laboratory operations and the ability to increase testing capacity for both SARS-CoV-2 and non-COVID-19 testing. In addition, long-standing laboratory workforce shortages became apparent, hindering the ability of clinical and public health laboratories to rapidly increase testing. The American Society for Microbiology, the College of American Pathologists, the National Coalition of STD Directors, and the Emerging Infections Network independently conducted surveys in 2020 and early 2021 to assess the capacity of the nation's clinical laboratories to respond to the increase in demand for testing during the COVID-19 pandemic. The results of these surveys highlighted the shortages of crucial supplies for SARS-CoV-2 testing and supplies for other routine laboratory diagnostics, as well as a shortage of trained personnel to perform testing. The conclusions are based on communications, observations, and the survey results of the clinical laboratory, public health, and professional organizations represented here. While the results of each survey considered separately may not be representative of the entire community, when considered together they provide remarkably similar results, further validating the findings and highlighting the importance of laboratory supply chains and the personnel capable of performing these tests for any response to a large-scale public health emergency.


Assuntos
COVID-19 , SARS-CoV-2 , Humanos , COVID-19/diagnóstico , Laboratórios , Pandemias , Saúde Pública , Teste para COVID-19 , Recursos Humanos
2.
J Clin Microbiol ; 60(7): e0009222, 2022 07 20.
Artigo em Inglês | MEDLINE | ID: mdl-35638361

RESUMO

Clinical Microbiology Open (CMO), a meeting supported by the American Society for Microbiology's Clinical and Public Health Microbiology Committee (CPHMC) and Corporate Council, provides a unique interactive platform for leaders from diagnostic microbiology laboratories, industry, and federal agencies to discuss the current and future state of the clinical microbiology laboratory. The purpose is to leverage the group's diverse views and expertise to address critical challenges, and discuss potential collaborative opportunities for diagnostic microbiology, through the utilization of varied resources. The first and second CMO meetings were held in 2018 and 2019, respectively. Discussions were focused on the diagnostic potential of innovative technologies and laboratory diagnostic stewardship, including expansion of next-generation sequencing into clinical diagnostics, improvement and advancement of molecular diagnostics, emerging diagnostics, including rapid antimicrobial susceptibility and point of care testing (POCT), harnessing big data through artificial intelligence, and staffing in the clinical microbiology laboratory. Shortly after CMO 2019, the coronavirus disease 2019 (COVID-19) pandemic further highlighted the need for the diagnostic microbiology community to work together to utilize and expand on resources to respond to the pandemic. The issues, challenges, and potential collaborative efforts discussed during the past two CMO meetings proved critical in addressing the COVID-19 response by diagnostic laboratories, industry partners, and federal organizations. Planning for a third CMO (CMO 2022) is underway and will transition from a discussion-based meeting to an action-based meeting. The primary focus will be to reflect on the lessons learned from the COVID-19 pandemic and better prepare for future pandemics.


Assuntos
COVID-19 , Pandemias , Inteligência Artificial , COVID-19/diagnóstico , Teste para COVID-19 , Humanos , Saúde Pública , Estados Unidos
3.
Clin Microbiol Rev ; 32(3)2019 06 19.
Artigo em Inglês | MEDLINE | ID: mdl-31142497

RESUMO

The evidence base for the optimal laboratory diagnosis of Clostridioides (Clostridium) difficile in adults is currently unresolved due to the uncertain performance characteristics and various combinations of tests. This systematic review evaluates the diagnostic accuracy of laboratory testing algorithms that include nucleic acid amplification tests (NAATs) to detect the presence of C. difficile The systematic review and meta-analysis included eligible studies (those that had PICO [population, intervention, comparison, outcome] elements) that assessed the diagnostic accuracy of NAAT alone or following glutamate dehydrogenase (GDH) enzyme immunoassays (EIAs) or GDH EIAs plus C. difficile toxin EIAs (toxin). The diagnostic yield of NAAT for repeat testing after an initial negative result was also assessed. Two hundred thirty-eight studies met inclusion criteria. Seventy-two of these studies had sufficient data for meta-analysis. The strength of evidence ranged from high to insufficient. The uses of NAAT only, GDH-positive EIA followed by NAAT, and GDH-positive/toxin-negative EIA followed by NAAT are all recommended as American Society for Microbiology (ASM) best practices for the detection of the C. difficile toxin gene or organism. Meta-analysis of published evidence supports the use of testing algorithms that use NAAT alone or in combination with GDH or GDH plus toxin EIA to detect the presence of C. difficile in adults. There is insufficient evidence to recommend against repeat testing of the sample using NAAT after an initial negative result due to a lack of evidence of harm (i.e., financial, length of stay, or delay of treatment) as specified by the Laboratory Medicine Best Practices (LMBP) systematic review method in making such an assessment. Findings from this systematic review provide clarity to diagnostic testing strategies and highlight gaps, such as low numbers of GDH/toxin/PCR studies, in existing evidence on diagnostic performance, which can be used to guide future clinical research studies.


Assuntos
Algoritmos , Infecções por Clostridium/diagnóstico , Técnicas de Amplificação de Ácido Nucleico/normas , Benchmarking , Clostridioides difficile/genética , Infecções por Clostridium/microbiologia , Humanos
4.
J Clin Microbiol ; 58(8)2020 Jul 23.
Artigo em Inglês | MEDLINE | ID: mdl-32381642

RESUMO

The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) pandemic has brought a new wave of challenges to health care, particularly in the area of rapid diagnostic test development and implementation. The diagnosis of acute coronavirus disease 2019 (COVID-19) is critically dependent on the detection of SARS-CoV-2 RNA from clinical specimens (e.g., nasopharyngeal swabs). While laboratory-developed testing for SARS-CoV-2 is an essential component of diagnostic testing for this virus, the majority of clinical microbiology laboratories are dependent on commercially available SARS-CoV-2 molecular assays. In contrast to assays approved or cleared by the U.S. Food and Drug Administration (FDA) for in vitro diagnostic use, assays for the detection of SARS-CoV-2 nucleic acids have emergency use authorization (EUA) from the FDA. Outside of highly specialized academic and commercial laboratory settings, clinical microbiology laboratories are likely unfamiliar with the EUA classification, and thus, assay verification can be daunting. Further compounding anxiety for laboratories are major issues with the supply chain that are dramatically affecting the availability of test reagents and requiring laboratories to implement multiple commercial EUA tests. Here, we describe guidance for the verification of assays with EUA for the detection of SARS-CoV-2 nucleic acid from clinical specimens.


Assuntos
Betacoronavirus/isolamento & purificação , Técnicas de Laboratório Clínico/métodos , Infecções por Coronavirus/diagnóstico , Aprovação de Teste para Diagnóstico , Pneumonia Viral/diagnóstico , RNA Viral/isolamento & purificação , Betacoronavirus/genética , COVID-19 , Teste para COVID-19 , Técnicas de Laboratório Clínico/normas , Humanos , Pandemias , RNA Viral/genética , SARS-CoV-2 , Estados Unidos , United States Food and Drug Administration
5.
J Clin Microbiol ; 59(1)2020 12 17.
Artigo em Inglês | MEDLINE | ID: mdl-33020185

RESUMO

Interest continues to grow regarding the role of serologic assays for the detection of prior infection with severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). The U.S. Food and Drug Administration (FDA) has granted emergency use authorization (EUA) status to many SARS-CoV-2 serologic assays. In this document, expert recommendations from clinical microbiologist members of the American Society for Microbiology (ASM) concerning detailed verification strategies for SARS-CoV-2 serologic assays with FDA EUA are provided, as are insights into assay limitations and reporting considerations for laboratories. Assessments concerning single-antibody and multiantibody isotype detection assays, which may provide either differentiated or nondifferentiated (i.e., total antibody) antibody class results, are addressed. Additional considerations prior to assay implementation are also discussed, including biosafety, quality control, and proficiency testing strategies. As the landscape of SARS-CoV-2 serologic testing is rapidly changing, this document provides updated guidance for laboratorians on application of these assays.


Assuntos
Anticorpos Antivirais/sangue , Teste Sorológico para COVID-19/métodos , COVID-19/diagnóstico , SARS-CoV-2/imunologia , Anticorpos Neutralizantes/sangue , Humanos , Valor Preditivo dos Testes , Estados Unidos , United States Food and Drug Administration
6.
J Clin Microbiol ; 57(9)2019 09.
Artigo em Inglês | MEDLINE | ID: mdl-31217268

RESUMO

Advanced microbiology technologies are rapidly changing our ability to diagnose infections, improve patient care, and enhance clinical workflow. These tools are increasing the breadth, depth, and speed of diagnostic data generated per patient, and testing is being moved closer to the patient through rapid diagnostic technologies, including point-of-care (POC) technologies. While select stakeholders have an appreciation of the value/importance of improvements in the microbial diagnostic field, there remains a disconnect between clinicians and some payers and hospital administrators in terms of understanding the potential clinical utility of these novel technologies. Therefore, a key challenge for the clinical microbiology community is to clearly articulate the value proposition of these technologies to encourage payers to cover and hospitals to adopt advanced microbiology tests. Specific guidance on how to define and demonstrate clinical utility would be valuable. Addressing this challenge will require alignment on this topic, not just by microbiologists but also by primary care and emergency room (ER) physicians, infectious disease specialists, pharmacists, hospital administrators, and government entities with an interest in public health. In this article, we discuss how to best conduct clinical studies to demonstrate and communicate clinical utility to payers and to set reasonable expectations for what diagnostic manufacturers should be required to demonstrate to support reimbursement from commercial payers and utilization by hospital systems.


Assuntos
Doenças Transmissíveis/diagnóstico , Testes Diagnósticos de Rotina/métodos , Técnicas Microbiológicas/métodos , Testes Diagnósticos de Rotina/tendências , Humanos , Técnicas Microbiológicas/tendências , Sistemas Automatizados de Assistência Junto ao Leito/tendências
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA