Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 71
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Proc Natl Acad Sci U S A ; 118(18)2021 05 04.
Artigo em Inglês | MEDLINE | ID: mdl-33903229

RESUMO

Lignocellulose, the structural component of plant cells, is a major agricultural byproduct and the most abundant terrestrial source of biopolymers on Earth. The complex and insoluble nature of lignocellulose limits its conversion into value-added commodities, and currently, efficient transformation requires expensive pretreatments and high loadings of enzymes. Here, we report on a fungus from the Parascedosporium genus, isolated from a wheat-straw composting community, that secretes a large and diverse array of carbohydrate-active enzymes (CAZymes) when grown on lignocellulosic substrates. We describe an oxidase activity that cleaves the major ß-ether units in lignin, thereby releasing the flavonoid tricin from monocot lignin and enhancing the digestion of lignocellulose by polysaccharidase mixtures. We show that the enzyme, which holds potential for the biorefining industry, is widely distributed among lignocellulose-degrading fungi from the Sordariomycetes phylum.


Assuntos
Ascomicetos/enzimologia , Biopolímeros/química , Enzimas/química , Lignina/química , Ascomicetos/química , Biopolímeros/metabolismo , Enzimas/genética , Flavonoides/química , Lignina/metabolismo , Oxirredução , Oxirredutases/química , Oxirredutases/genética , Oxigenases/química , Especificidade por Substrato/genética , Triticum/enzimologia , Triticum/microbiologia
2.
Plant J ; 106(6): 1776-1790, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-33788319

RESUMO

Cell walls are dynamic and multi-component materials that play important roles in many areas of plant biology. The composition and interactions of the structural elements give rise to material properties, which are modulated by the activity of wall-related enzymes. Studies of the genes and enzymes that determine wall composition and function have made great progress, but rarely take account of potential compensatory changes in wall polymers that may accompany and accommodate changes in other components, particularly for specific polysaccharides. Here, we present a method that allows the simultaneous examination of the mass distributions and quantities of specific cell wall matrix components, allowing insight into direct and indirect consequences of cell wall manipulations. The method employs gel-permeation chromatography fractionation of cell wall polymers followed by enzyme-linked immunosorbent assay to identify polymer types. We demonstrate the potential of this method using glycan-directed monoclonal antibodies to detect epitopes representing xyloglucans, heteromannans, glucuronoxylans, homogalacturonans (HGs) and methyl-esterified HGs. The method was used to explore compositional diversity in different Arabidopsis organs and to examine the impacts of changing wall composition in a number of previously characterized cell wall mutants. As demonstrated in this article, this methodology allows a much deeper understanding of wall composition, its dynamism and plasticity to be obtained, furthering our knowledge of cell wall biology.


Assuntos
Arabidopsis/química , Parede Celular/química , Cromatografia em Gel/métodos , Ensaio de Imunoadsorção Enzimática/métodos , Células Vegetais/química , Polissacarídeos/química , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Regulação da Expressão Gênica de Plantas/genética , Mutação , Folhas de Planta/citologia
3.
BMC Biol ; 19(1): 233, 2021 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-34724941

RESUMO

BACKGROUND: Shipworms are marine xylophagus bivalve molluscs, which can live on a diet solely of wood due to their ability to produce plant cell wall-degrading enzymes. Bacterial carbohydrate-active enzymes (CAZymes), synthesised by endosymbionts living in specialised shipworm cells called bacteriocytes and located in the animal's gills, play an important role in wood digestion in shipworms. However, the main site of lignocellulose digestion within these wood-boring molluscs, which contains both endogenous lignocellulolytic enzymes and prokaryotic enzymes, is the caecum, and the mechanism by which bacterial enzymes reach the distant caecum lumen has remained so far mysterious. Here, we provide a characterisation of the path through which bacterial CAZymes produced in the gills of the shipworm Lyrodus pedicellatus reach the distant caecum to contribute to the digestion of wood. RESULTS: Through a combination of transcriptomics, proteomics, X-ray microtomography, electron microscopy studies and in vitro biochemical characterisation, we show that wood-digesting enzymes produced by symbiotic bacteria are localised not only in the gills, but also in the lumen of the food groove, a stream of mucus secreted by gill cells that carries food particles trapped by filter feeding to the mouth. Bacterial CAZymes are also present in the crystalline style and in the caecum of their shipworm host, suggesting a unique pathway by which enzymes involved in a symbiotic interaction are transported to their site of action. Finally, we characterise in vitro four new bacterial glycosyl hydrolases and a lytic polysaccharide monooxygenase identified in our transcriptomic and proteomic analyses as some of the major bacterial enzymes involved in this unusual biological system. CONCLUSION: Based on our data, we propose that bacteria and their enzymes are transported from the gills along the food groove to the shipworm's mouth and digestive tract, where they aid in wood digestion.


Assuntos
Bivalves , Proteômica , Animais , Bactérias , Filogenia , Simbiose
4.
New Phytol ; 230(2): 629-640, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33124693

RESUMO

Wheat is the most widely grown crop globally, providing 20% of all human calories and protein. Achieving step changes in genetic yield potential is crucial to ensure food security, but efforts are thwarted by an apparent trade-off between grain size and number. Expansins are proteins that play important roles in plant growth by enhancing stress relaxation in the cell wall, which constrains cell expansion. Here, we describe how targeted overexpression of an α-expansin in early developing wheat seeds leads to a significant increase in grain size without a negative effect on grain number, resulting in a yield boost under field conditions. The best-performing transgenic line yielded 12.3% higher average grain weight than the control, and this translated to an increase in grain yield of 11.3% in field experiments using an agronomically appropriate plant density. This targeted transgenic approach provides an opportunity to overcome a common bottleneck to yield improvement across many crops.


Assuntos
Expressão Ectópica do Gene , Triticum , Produtos Agrícolas/metabolismo , Grão Comestível/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Sementes/genética , Sementes/metabolismo , Triticum/genética , Triticum/metabolismo
5.
Genomics ; 112(1): 952-960, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-31201854

RESUMO

The genus Meridianimaribacter is one of the least-studied genera within Cytophaga-Flavobacteria. To date, no genomic analysis of Meridianimaribacter has been reported. In this study, Meridianimaribacter sp. strain CL38, a lignocellulose degrading halophile was isolated from mangrove soil. The genome of strain CL38 was sequenced and analyzed. The assembled genome contains 17 contigs with 3.33 Mbp, a GC content of 33.13% and a total of 2982 genes predicted. Lignocellulose degrading enzymes such as cellulases (GH3, 5, 9, 16, 74 and 144), xylanases (GH43 and CE4) and mannanases (GH5, 26, 27 and 130) are encoded in the genome. Furthermore, strain CL38 demonstrated its ability to decompose empty fruit bunch, a lignocellulosic waste residue arising from palm oil industry. The genome information coupled with experimental studies confirmed the ability of strain CL38 to degrade lignocellulosic biomass. Therefore, Meridianimaribacter sp. strain CL38, with its halotolerance, could be useful for seawater based lignocellulosic biorefining.


Assuntos
Flavobacteriaceae/genética , Genoma Bacteriano , Lignina/metabolismo , Flavobacteriaceae/classificação , Flavobacteriaceae/enzimologia , Genômica , Redes e Vias Metabólicas/genética , Filogenia , Polissacarídeos/metabolismo
6.
Plant Cell Environ ; 43(9): 2172-2191, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32441772

RESUMO

Although cell wall polymers play important roles in the tolerance of plants to abiotic stress, the effects of salinity on cell wall composition and metabolism in grasses remain largely unexplored. Here, we conducted an in-depth study of changes in cell wall composition and phenolic metabolism induced upon salinity in maize seedlings and plants. Cell wall characterization revealed that salt stress modulated the deposition of cellulose, matrix polysaccharides and lignin in seedling roots, plant roots and stems. The extraction and analysis of arabinoxylans by size-exclusion chromatography, 2D-NMR spectroscopy and carbohydrate gel electrophoresis showed a reduction of arabinoxylan content in salt-stressed roots. Saponification and mild acid hydrolysis revealed that salinity also reduced the feruloylation of arabinoxylans in roots of seedlings and plants. Determination of lignin content and composition by nitrobenzene oxidation and 2D-NMR confirmed the increased incorporation of syringyl units in lignin of maize roots. Salt stress also induced the expression of genes and the activity of enzymes enrolled in phenylpropanoid biosynthesis. The UHPLC-MS-based metabolite profiling confirmed the modulation of phenolic profiling by salinity and the accumulation of ferulate and its derivatives 3- and 4-O-feruloyl quinate. In conclusion, we present a model for explaining cell wall remodeling in response to salinity.


Assuntos
Parede Celular/química , Fenóis/metabolismo , Polissacarídeos/metabolismo , Zea mays/citologia , Zea mays/metabolismo , Parede Celular/metabolismo , Celulose/análise , Celulose/química , Ácidos Cumáricos/metabolismo , Regulação da Expressão Gênica de Plantas , Lignina/metabolismo , Monossacarídeos/análise , Células Vegetais/metabolismo , Raízes de Plantas/metabolismo , Polissacarídeos/química , Estresse Salino/fisiologia , Plântula/citologia , Plântula/metabolismo , Xilanos/análise , Xilanos/química , Xilanos/metabolismo , Zea mays/crescimento & desenvolvimento
7.
Int J Syst Evol Microbiol ; 70(3): 1769-1776, 2020 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-31976852

RESUMO

To date, there is sparse information for the genus Robertkochia with Robertkochia marina CC-AMO-30DT as the only described member. We report here a new species isolated from mangrove soil collected at Malaysia Tanjung Piai National Park and perform polyphasic characterization to determine its taxonomic position. Strain CL23T is a Gram-negative, yellow-pigmented, strictly aerobic, catalase-positive and oxidase-positive bacterium. The optimal growth conditions were determined to be at pH 7.0, 30-37 °C and in 1-2 % (w/v) NaCl. The major respiratory quinone was menaquinone-6 (MK-6) and the highly abundant polar lipids were four unidentified lipids, a phosphatidylethanolamine and two unidentified aminolipids. The 16S rRNA gene similarity between strain CL23T and R. marina CC-AMO-30DT is 96.67 %. Strain CL23T and R. marina CC-AMO-30DT clustered together and were distinguished from taxa of closely related genera in 16S rRNA gene phylogenetic analysis. Genome sequencing revealed that strain CL23T has a genome size of 4.4 Mbp and a G+C content of 40.72 mol%. Overall genome related indexes including digital DNA-DNA hybridization value and average nucleotide identity are 17.70 % and approximately 70%, below the cutoffs of 70 and 95%, respectively, indicated that strain CL23T is a distinct species from R. marina CC-AMO-30DT. Collectively, based on the phenotypic, chemotaxonomic, phylogenetic and genomic evidences presented here, strain CL23T is proposed to represent a new species with the name Robertkochia solimangrovi sp. nov. (KCTC 72252T=LMG 31418T). An emended description of the genus Robertkochia is also proposed.


Assuntos
Flavobacteriaceae/classificação , Filogenia , Microbiologia do Solo , Técnicas de Tipagem Bacteriana , Composição de Bases , DNA Bacteriano/genética , Ácidos Graxos/química , Flavobacteriaceae/isolamento & purificação , Tamanho do Genoma , Malásia , Hibridização de Ácido Nucleico , Fosfolipídeos/química , Pigmentação , RNA Ribossômico 16S/genética , Análise de Sequência de DNA , Vitamina K 2/análogos & derivados , Vitamina K 2/química
8.
Microb Cell Fact ; 19(1): 68, 2020 Mar 16.
Artigo em Inglês | MEDLINE | ID: mdl-32178677

RESUMO

BACKGROUND: Worldwide 3.4 billion tonnes of municipal solid waste (MSW) will be produced annually by 2050, however, current approaches to MSW management predominantly involve unsustainable practices like landfilling and incineration. The organic fraction of MSW (OMSW) typically comprises ~ 50% lignocellulose-rich material but is underexplored as a biomanufacturing feedstock due to its highly inconsistent and heterogeneous composition. This study sought to overcome the limitations associated with studying MSW-derived feedstocks by using OMSW produced from a realistic and reproducible MSW mixture on a commercial autoclave system. The resulting OMSW fibre was enzymatically hydrolysed and used to screen diverse microorganisms of biotechnological interest to identify robust species capable of fermenting this complex feedstock. RESULTS: The autoclave pre-treated OMSW fibre contained a polysaccharide fraction comprising 38% cellulose and 4% hemicellulose. Enzymatic hydrolysate of OMSW fibre was high in D-glucose (5.5% w/v) and D-xylose (1.8%w/v) but deficient in nitrogen and phosphate. Although relatively low levels of levulinic acid (30 mM) and vanillin (2 mM) were detected and furfural and 5-hydroxymethylfurfural were absent, the hydrolysate contained an abundance of potentially toxic metals (0.6% w/v). Hydrolysate supplemented with 1% yeast extract to alleviate nutrient limitation was used in a substrate-oriented shake-flask screen with eight biotechnologically useful microorganisms (Clostridium saccharoperbutylacetonicum, Escherichia coli, Geobacillus thermoglucosidasius, Pseudomonas putida, Rhodococcus opacus, Saccharomyces cerevisiae, Schizosaccharomyces pombe and Zymomonas mobilis). Each species' growth and productivity were characterised and three species were identified that robustly and efficiently fermented OMSW fibre hydrolysate without significant substrate inhibition: Z. mobilis, S. cerevisiae and R. opacus, respectively produced product to 69%, 70% and 72% of the maximum theoretical fermentation yield and could theoretically produce 136 kg and 139 kg of ethanol and 91 kg of triacylglycerol (TAG) per tonne of OMSW. CONCLUSIONS: Developing an integrated biorefinery around MSW has the potential to significantly alleviate the environmental burden of current waste management practices. Substrate-oriented screening of a representative and reproducible OMSW-derived fibre identified microorganisms intrinsically suited to growth on OMSW hydrolysates. These species are promising candidates for developing an MSW biorefining platform and provide a foundation for future studies aiming to valorise this underexplored feedstock.


Assuntos
Bactérias/metabolismo , Biossólidos/microbiologia , Celulose/metabolismo , Fungos/metabolismo , Polissacarídeos/metabolismo , Bactérias/crescimento & desenvolvimento , Biocombustíveis , Etanol/metabolismo , Fermentação , Fungos/crescimento & desenvolvimento , Triglicerídeos/metabolismo
9.
Macromol Rapid Commun ; 40(22): e1900361, 2019 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-31614050

RESUMO

Large amounts of agricultural wastes are rich in pectins that, in many cases, disrupt the processing of food residues due to gelation. Despite pectins being a promising sustainable feedstock for bio-based chemical production, the current pathways to produce platform molecules from this polysaccharide are hazardous and entail the use of strong acids. The present work describes a sequence of biocatalyzed reactions that involves 1) the extraction of pectin from sugar beet pulp and enzymatic recovery of galacturonic acid (GalA), followed by 2) the enzymatic oxidation of the GalA aldehyde and the recovery of galactaric acid (GA), and 3) the biocatalyzed polycondensation of GA to obtain fully bio-based polyesters carrying lateral hydroxy functionalities. The acid-free pectin extraction is optimized using enzymes and microwave technology. The conditions for enzymatic oxidation of GalA allow the separation of the GA produced by a simple centrifugation step that leads to the enzyme-catalyzed polycondensation reactions.


Assuntos
Pectinas/química , Poliésteres/química , Polímeros/química , Açúcares Ácidos/química , Beta vulgaris/química , Beta vulgaris/enzimologia , Biocatálise , Enzimas/metabolismo , Ácidos Hexurônicos/química , Ácidos Hexurônicos/metabolismo , Modelos Químicos , Estrutura Molecular , Poliésteres/síntese química , Polímeros/síntese química , Polissacarídeos/química , Polissacarídeos/metabolismo
10.
Planta ; 248(5): 1213-1229, 2018 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-30094490

RESUMO

MAIN CONCLUSION: Methyl-jasmonate induces large increases in p-coumarate linked to arabinoxylan in Brachypodium and in abundance of GT61 and BAHD family transcripts consistent with a role in synthesis of this linkage. Jasmonic acid (JA) signalling is required for many stress responses in plants, inducing large changes in the transcriptome, including up-regulation of transcripts associated with lignification. However, less is known about the response to JA of grass cell walls and the monocot-specific features of arabinoxylan (AX) synthesis and acylation by ferulic acid (FA) and para-coumaric acid (pCA). Here, we show that methyl-jasmonate (MeJA) induces moderate increases in FA monomer, > 50% increases in FA dimers, and five-sixfold increases in pCA ester-linked to cell walls in Brachypodium callus. Direct measurement of arabinose acylated by pCA (Araf-pCA) indicated that most or all the increase in cell-wall pCA was due to pCA ester-linked to AX. Analysis of the RNA-seq transcriptome of the callus response showed that these cell-wall changes were accompanied by up-regulation of members of the GT61 and BAHD gene families implicated in AX decoration and acylation; two BAHD paralogues were among the most up-regulated cell-wall genes (seven and fivefold) after 24 h exposure to MeJA. Similar responses to JA of orthologous BAHD and GT61 transcripts are present in the RiceXPro public expression data set for rice seedlings, showing that they are not specific to Brachypodium or to callus. The large response of AX-pCA to MeJA may, therefore, indicate an important role for this linkage in response of primary cell walls of grasses to JA signalling.


Assuntos
Acetatos/farmacologia , Brachypodium/efeitos dos fármacos , Parede Celular/efeitos dos fármacos , Ciclopentanos/farmacologia , Oxilipinas/farmacologia , Reguladores de Crescimento de Plantas/farmacologia , Transcriptoma/efeitos dos fármacos , Brachypodium/genética , Brachypodium/metabolismo , Parede Celular/química , Relação Dose-Resposta a Droga , Perfilação da Expressão Gênica , Genes de Plantas/genética , Hidroxibenzoatos/análise , Redes e Vias Metabólicas/efeitos dos fármacos , Filogenia , RNA de Plantas/genética , Transcriptoma/genética
11.
New Phytol ; 218(3): 974-985, 2018 05.
Artigo em Inglês | MEDLINE | ID: mdl-29574807

RESUMO

The recalcitrance of secondary plant cell walls to digestion constrains biomass use for the production of sustainable bioproducts and for animal feed. We screened a population of Brachypodium recombinant inbred lines (RILs) for cell wall digestibility using commercial cellulases and detected a quantitative trait locus (QTL) associated with this trait. Examination of the chromosomal region associated with this QTL revealed a candidate gene that encodes a putative glycosyl transferase family (GT) 43 protein, orthologue of IRX14 in Arabidopsis, and hence predicted to be involved in the biosynthesis of xylan. Arabinoxylans form the major matrix polysaccharides in cell walls of grasses, such as Brachypodium. The parental lines of the RIL population carry alternative nonsynonymous polymorphisms in the BdGT43A gene, which were inherited in the RIL progeny in a manner compatible with a causative role in the variation in straw digestibility. In order to validate the implied role of our candidate gene in affecting straw digestibility, we used RNA interference to lower the expression levels of the BdGT43A gene in Brachypodium. The biomass of the silenced lines showed higher digestibility supporting a causative role of the BdGT43A gene, suggesting that it might form a good target for improving straw digestibility in crops.


Assuntos
Brachypodium/enzimologia , Glicosiltransferases/metabolismo , Proteínas de Plantas/metabolismo , Xilanos/biossíntese , Sequência de Aminoácidos , Animais , Animais Geneticamente Modificados , Arabinose/metabolismo , Sequência de Bases , Brachypodium/genética , Metabolismo dos Carboidratos , Parede Celular/metabolismo , Cromossomos de Plantas/genética , Ácidos Cumáricos/metabolismo , Regulação da Expressão Gênica de Plantas , Genes de Plantas , Glicosiltransferases/química , Glicosiltransferases/genética , Endogamia , Filogenia , Proteínas de Plantas/química , Proteínas de Plantas/genética , Caules de Planta/metabolismo , Locos de Características Quantitativas/genética , Interferência de RNA , Xilose/metabolismo
12.
BMC Genomics ; 18(1): 406, 2017 05 25.
Artigo em Inglês | MEDLINE | ID: mdl-28545405

RESUMO

BACKGROUND: Miscanthus sinensis is a high yielding perennial grass species with great potential as a bioenergy feedstock. One of the challenges that currently impedes commercial cellulosic biofuel production is the technical difficulty to efficiently convert lignocellulosic biomass into biofuel. The development of feedstocks with better biomass quality will improve conversion efficiency and the sustainability of the value-chain. Progress in the genetic improvement of biomass quality may be substantially expedited by the development of genetic markers associated to quality traits, which can be used in a marker-assisted selection program. RESULTS: To this end, a mapping population was developed by crossing two parents of contrasting cell wall composition. The performance of 182 F1 offspring individuals along with the parents was evaluated in a field trial with a randomized block design with three replicates. Plants were phenotyped for cell wall composition and conversion efficiency characters in the second and third growth season after establishment. A new SNP-based genetic map for M. sinensis was built using a genotyping-by-sequencing (GBS) approach, which resulted in 464 short-sequence uniparental markers that formed 16 linkage groups in the male map and 17 linkage groups in the female map. A total of 86 QTLs for a variety of biomass quality characteristics were identified, 20 of which were detected in both growth seasons. Twenty QTLs were directly associated to different conversion efficiency characters. Marker sequences were aligned to the sorghum reference genome to facilitate cross-species comparisons. Analyses revealed that for some traits previously identified QTLs in sorghum occurred in homologous regions on the same chromosome. CONCLUSION: In this work we report for the first time the genetic mapping of cell wall composition and bioconversion traits in the bioenergy crop miscanthus. These results are a first step towards the development of marker-assisted selection programs in miscanthus to improve biomass quality and facilitate its use as feedstock for biofuel production.


Assuntos
Biocombustíveis , Biomassa , Parede Celular/metabolismo , Poaceae/citologia , Poaceae/metabolismo , Combinação de Medicamentos , Ligação Genética , Variação Genética , Genótipo , Lignina/metabolismo , Poaceae/genética , Pirantel/análogos & derivados , Locos de Características Quantitativas/genética , Especificidade da Espécie , Sintenia
13.
Proc Natl Acad Sci U S A ; 111(40): 14601-6, 2014 Oct 07.
Artigo em Inglês | MEDLINE | ID: mdl-25246540

RESUMO

Lignocellulosic plant biomass is an attractive feedstock for the production of sustainable biofuels, but the commercialization of such products is hampered by the high costs of processing this material into fermentable sugars (saccharification). One approach to lowering these costs is to produce crops with cell walls that are more susceptible to hydrolysis to reduce preprocessing and enzyme inputs. To deepen our understanding of the molecular genetic basis of lignocellulose recalcitrance, we have screened a mutagenized population of the model grass Brachypodium distachyon for improved saccharification with an industrial polysaccharide-degrading enzyme mixture. From an initial screen of 2,400 M2 plants, we selected 12 lines that showed heritable improvements in saccharification, mostly with no significant reduction in plant size or stem strength. Characterization of these putative mutants revealed a variety of alterations in cell-wall components. We have mapped the underlying genetic lesions responsible for increased saccharification using a deep sequencing approach, and here we report the mapping of one of the causal mutations to a narrow region in chromosome 2. The most likely candidate gene in this region encodes a GT61 glycosyltransferase, which has been implicated in arabinoxylan substitution. Our work shows that forward genetic screening provides a powerful route to identify factors that impact on lignocellulose digestibility, with implications for improving feedstock for cellulosic biofuel production.


Assuntos
Brachypodium/genética , Brachypodium/metabolismo , Metabolismo dos Carboidratos , Parede Celular/metabolismo , Mutação , Biocombustíveis , Biomassa , Brachypodium/crescimento & desenvolvimento , Celulose/metabolismo , Mapeamento Cromossômico , Cromossomos de Plantas/genética , Glicosiltransferases/genética , Glicosiltransferases/metabolismo , Lignina/metabolismo , Monossacarídeos/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Caules de Planta/genética , Caules de Planta/crescimento & desenvolvimento , Caules de Planta/metabolismo , Polissacarídeos/metabolismo , Análise de Componente Principal , Espectroscopia de Infravermelho com Transformada de Fourier
14.
Plant Biotechnol J ; 14(1): 387-97, 2016 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-25960248

RESUMO

Cell wall hemicelluloses and pectins are O-acetylated at specific positions, but the significance of these substitutions is poorly understood. Using a transgenic approach, we investigated how reducing the extent of O-acetylation in xylan affects cell wall chemistry, plant performance and the recalcitrance of lignocellulose to saccharification. The Aspergillus niger acetyl xylan esterase AnAXE1 was expressed in Arabidopsis under the control of either the constitutively expressed 35S CAMV promoter or a woody-tissue-specific GT43B aspen promoter, and the protein was targeted to the apoplast by its native signal peptide, resulting in elevated acetyl esterase activity in soluble and wall-bound protein extracts and reduced xylan acetylation. No significant alterations in cell wall composition were observed in the transgenic lines, but their xylans were more easily digested by a ß-1,4-endoxylanase, and more readily extracted by hot water, acids or alkali. Enzymatic saccharification of lignocellulose after hot water and alkali pretreatments produced up to 20% more reducing sugars in several lines. Fermentation by Trametes versicolor of tissue hydrolysates from the line with a 30% reduction in acetyl content yielded ~70% more ethanol compared with wild type. Plants expressing 35S:AnAXE1 and pGT43B:AnAXE1 developed normally and showed increased resistance to the biotrophic pathogen Hyaloperonospora arabidopsidis, probably due to constitutive activation of defence pathways. However, unintended changes in xyloglucan and pectin acetylation were only observed in 35S:AnAXE1-expressing plants. This study demonstrates that postsynthetic xylan deacetylation in woody tissues is a promising strategy for optimizing lignocellulosic biomass for biofuel production.


Assuntos
Acetilesterase/metabolismo , Arabidopsis/genética , Aspergillus/enzimologia , Metabolismo dos Carboidratos , Regulação da Expressão Gênica de Plantas , Lignina/metabolismo , Caules de Planta/metabolismo , Acetilação , Parede Celular/enzimologia , Etanol/metabolismo , Pectinas/metabolismo , Filogenia , Plantas Geneticamente Modificadas , Regiões Promotoras Genéticas/genética , Xilanos/metabolismo
15.
New Phytol ; 209(4): 1366-81, 2016 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-26443261

RESUMO

The aim of producing sustainable liquid biofuels and chemicals from lignocellulosic biomass remains high on the sustainability agenda, but is challenged by the costs of producing fermentable sugars from these materials. Sugars from plant biomass can be fermented to alcohols or even alkanes, creating a liquid fuel in which carbon released on combustion is balanced by its photosynthetic capture. Large amounts of sugar are present in the woody, nonfood parts of crops and could be used for fuel production without compromising global food security. However, the sugar in woody biomass is locked up in the complex and recalcitrant lignocellulosic plant cell wall, making it difficult and expensive to extract. In this paper, we review what is known about the major polymeric components of woody plant biomass, with an emphasis on the molecular interactions that contribute to its recalcitrance to enzymatic digestion. In addition, we review the extensive research that has been carried out in order to understand and reduce lignocellulose recalcitrance and enable more cost-effective production of fuel from woody plant biomass.


Assuntos
Biomassa , Lignina/metabolismo , Plantas/metabolismo , Parede Celular/metabolismo , Lignina/química , Modelos Biológicos
16.
Proc Natl Acad Sci U S A ; 110(25): 10189-94, 2013 Jun 18.
Artigo em Inglês | MEDLINE | ID: mdl-23733951

RESUMO

Nature uses a diversity of glycoside hydrolase (GH) enzymes to convert polysaccharides to sugars. As lignocellulosic biomass deconstruction for biofuel production remains costly, natural GH diversity offers a starting point for developing industrial enzymes, and fungal GH family 7 (GH7) cellobiohydrolases, in particular, provide significant hydrolytic potential in industrial mixtures. Recently, GH7 enzymes have been found in other kingdoms of life besides fungi, including in animals and protists. Here, we describe the in vivo spatial expression distribution, properties, and structure of a unique endogenous GH7 cellulase from an animal, the marine wood borer Limnoria quadripunctata (LqCel7B). RT-quantitative PCR and Western blot studies show that LqCel7B is expressed in the hepatopancreas and secreted into the gut for wood degradation. We produced recombinant LqCel7B, with which we demonstrate that LqCel7B is a cellobiohydrolase and obtained four high-resolution crystal structures. Based on a crystallographic and computational comparison of LqCel7B to the well-characterized Hypocrea jecorina GH7 cellobiohydrolase, LqCel7B exhibits an extended substrate-binding motif at the tunnel entrance, which may aid in substrate acquisition and processivity. Interestingly, LqCel7B exhibits striking surface charges relative to fungal GH7 enzymes, which likely results from evolution in marine environments. We demonstrate that LqCel7B stability and activity remain unchanged, or increase at high salt concentration, and that the L. quadripunctata GH mixture generally contains cellulolytic enzymes with highly acidic surface charge compared with enzymes derived from terrestrial microbes. Overall, this study suggests that marine cellulases offer significant potential for utilization in high-solids industrial biomass conversion processes.


Assuntos
Celulase/metabolismo , Celulose 1,4-beta-Celobiosidase/química , Celulose 1,4-beta-Celobiosidase/metabolismo , Crustáceos/enzimologia , Tolerância ao Sal/fisiologia , Animais , Biocombustíveis , Biomassa , Celulose 1,4-beta-Celobiosidase/genética , Crustáceos/genética , Cristalografia por Raios X , Sistema Digestório/enzimologia , Ativação Enzimática/fisiologia , Hypocrea/enzimologia , Dados de Sequência Molecular , Estrutura Terciária de Proteína , Água do Mar , Relação Estrutura-Atividade , Especificidade por Substrato
17.
BMC Biotechnol ; 15: 56, 2015 Jun 18.
Artigo em Inglês | MEDLINE | ID: mdl-26084671

RESUMO

BACKGROUND: Expressing microbial polysaccharide-modifying enzymes in plants is an attractive approach to custom tailor plant lignocellulose and to study the importance of wall structures to plant development. Expression of α-glucuronidases in plants to modify the structures of glucuronoxylans has not been yet attempted. Glycoside hydrolase (GH) family 115 α-glucuronidases cleave the internal α-D-(4-O-methyl)glucopyranosyluronic acid ((Me)GlcA) from xylans or xylooligosaccharides. In this work, a GH115 α-glucuronidase from Schizophyllum commune, ScAGU115, was expressed in Arabidopsis thaliana and targeted to apoplast. The transgene effects on native xylans' structures, plant development, and lignocellulose saccharification were evaluated and compared to those of knocked out glucuronyltransferases AtGUX1 and AtGUX2. RESULTS: The ScAGU115 extracted from cell walls of Arabidopsis was active on the internally substituted aldopentaouronic acid (XUXX). The transgenic plants did not show any change in growth or in lignocellulose saccharification. The cell wall (Me)GlcA and other non-cellulosic sugars, as well as the lignin content, remained unchanged. In contrast, the gux1gux2 double mutant showed a 70% decrease in (Me)GlcA to xylose molar ratio, and, interestingly, a 60% increase in the xylose content. Whereas ScAGU115-expressing plants exhibited a decreased signal in native secondary walls from the monoclonal antibody UX1 that recognizes (Me)GlcA on non-acetylated xylan, the signal was not affected after wall deacetylation. In contrast, gux1gux2 mutant was lacking UX1 signals in both native and deacetylated cell walls. This indicates that acetyl substitution on the xylopyranosyl residue carrying (Me)GlcA or on the neighboring xylopyranosyl residues may restrict post-synthetic modification of xylans by ScAGU115 in planta. CONCLUSIONS: Active GH115 α-glucuronidase has been produced for the first time in plants. The cell wall-targeted ScAGU115 was shown to affect those glucuronate substitutions of xylan, which are accessible to UX1 antibody and constitute a small fraction in Arabidopsis, whereas majority of (Me)GlcA substitutions were resistant, most likely due to the shielding by acetyl groups. Plants expressing ScAGU115 did not show any defects under laboratory conditions indicating that the UX1 epitope of xylan is not essential under these conditions. Moreover the removal of the UX1 xylan epitope does not affect lignocellulose saccharification.


Assuntos
Glicosídeo Hidrolases/biossíntese , Lignina/metabolismo , Schizophyllum/enzimologia , Xilanos/metabolismo , Arabidopsis/enzimologia , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Parede Celular/enzimologia , Regulação Enzimológica da Expressão Gênica , Glucuronatos/metabolismo , Ácido Glucurônico/metabolismo , Glicosídeo Hidrolases/genética , Glicosiltransferases/genética , Glicosiltransferases/metabolismo , Lignina/genética , Oligossacarídeos/metabolismo , Polissacarídeos/metabolismo
18.
Plant J ; 73(3): 496-508, 2013 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-23078216

RESUMO

Brachypodium distachyon (Brachypodium) has been proposed as a model for grasses, but there is limited knowledge regarding its lignins and no data on lignin-related mutants. The cinnamyl alcohol dehydrogenase (CAD) genes involved in lignification are promising targets to improve the cellulose-to-ethanol conversion process. Down-regulation of CAD often induces a reddish coloration of lignified tissues. Based on this observation, we screened a chemically induced population of Brachypodium mutants (Bd21-3 background) for red culm coloration. We identified two mutants (Bd4179 and Bd7591), with mutations in the BdCAD1 gene. The mature stems of these mutants displayed reduced CAD activity and lower lignin content. Their lignins were enriched in 8-O-4- and 4-O-5-coupled sinapaldehyde units, as well as resistant inter-unit bonds and free phenolic groups. By contrast, there was no increase in coniferaldehyde end groups. Moreover, the amount of sinapic acid ester-linked to cell walls was measured for the first time in a lignin-related CAD grass mutant. Functional complementation of the Bd4179 mutant with the wild-type BdCAD1 allele restored the wild-type phenotype and lignification. Saccharification assays revealed that Bd4179 and Bd7591 lines were more susceptible to enzymatic hydrolysis than wild-type plants. Here, we have demonstrated that BdCAD1 is involved in lignification of Brachypodium. We have shown that a single nucleotide change in BdCAD1 reduces the lignin level and increases the degree of branching of lignins through incorporation of sinapaldehyde. These changes make saccharification of cells walls pre-treated with alkaline easier without compromising plant growth.


Assuntos
Oxirredutases do Álcool/genética , Brachypodium/metabolismo , Metabolismo dos Carboidratos , Lignina/metabolismo , Alelos , Brachypodium/enzimologia , Brachypodium/genética , Genes de Plantas , Mutação , Filogenia
20.
New Phytol ; 218(1): 5-7, 2018 04.
Artigo em Inglês | MEDLINE | ID: mdl-29488282
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA