Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 61
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Eur J Immunol ; 54(1): e2250274, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37822141

RESUMO

Spinal cord injury (SCI) affects hundreds of thousands of people in the United States, and while some effects of the injury are broadly recognized (deficits to locomotion, fine motor control, and quality of life), the systemic consequences of SCI are less well-known. The spinal cord regulates systemic immunological and visceral functions; this control is often disrupted by the injury, resulting in viscera including the gut, spleen, liver, bone marrow, and kidneys experiencing local tissue inflammation and physiological dysfunction. The extent of pathology depends on the injury level, severity, and time post-injury. In this review, we describe immunological and metabolic consequences of SCI across several organs. Since infection and metabolic disorders are primary reasons for reduced lifespan after SCI, it is imperative that research continues to focus on these deleterious aspects of SCI to improve life span and quality of life for individuals with SCI.


Assuntos
Qualidade de Vida , Traumatismos da Medula Espinal , Humanos , Traumatismos da Medula Espinal/metabolismo , Traumatismos da Medula Espinal/patologia , Inflamação , Medula Espinal/patologia , Fígado/patologia
2.
Spinal Cord ; 2024 Jul 03.
Artigo em Inglês | MEDLINE | ID: mdl-38961159

RESUMO

STUDY DESIGN: Secondary analysis of a randomized, multi-center, placebo-controlled study(Sygen®). OBJECTIVES: To evaluate racial differences in serological markers in individuals with spinal cord injury(SCI) across the first year of injury. SETTING: Hospitals in North America. METHODS: Serological markers (e.g.,cell count, liver, kidney, and pancreatic function, metabolism, and muscle damage) were assessed among 316 participants (247 White, 69 Black) at admission, weeks 1, 2, 4, 8, and 52 post-injury. Linear mixed models were employed to explore the main effects of time, race (Black vs. White), and their interaction, with adjustment of covariates such as study center, polytrauma, injury (level, completeness), treatment group, and sex. RESULTS: A main effect of race was observed where White individuals had higher alanine transaminase, blood urea nitrogen(BUN), BUN/Creatinine ratio, sodium, and chloride, while Black individuals had higher calcium, total serum protein, and platelets. For markers with interaction effects, post-hoc comparisons showed that at week 52, White individuals had higher mature neutrophils, hematocrit, hemoglobin, mean corpuscular hemoglobin, albumin, and triglycerides, and Black individuals had higher amylase. Eosinophils, monocytes, red blood cells, aspartate aminotransferase, bilirubin, cholesterol, partial thromboplastin time, urine specific gravity, urine pH, CO2, and inorganic phosphorus did not differ between races. CONCLUSIONS: Our results revealed racial differences in serological markers and underscores the importance of considering race as a determinant of physiological responses. Future studies are warranted to explore the causes and implications of these racial disparities to facilitate tailored clinical management and social policy changes that can improve health equity.

3.
Glia ; 71(9): 2096-2116, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37208933

RESUMO

Our prior work examining endogenous repair after spinal cord injury (SCI) in mice revealed that large numbers of new oligodendrocytes (OLs) are generated in the injured spinal cord, with peak oligodendrogenesis between 4 and 7 weeks post-injury (wpi). We also detected new myelin formation over 2 months post-injury (mpi). Our current work significantly extends these results, including quantification of new myelin through 6 mpi and concomitant examination of indices of demyelination. We also examined electrophysiological changes during peak oligogenesis and a potential mechanism driving OL progenitor cell (OPC) contact with axons. Results reveal peak in remyelination occurs during the 3rd mpi, and that myelin generation continues for at least 6 mpi. Further, motor evoked potentials significantly increased during peak remyelination, suggesting enhanced axon potential conduction. Interestingly, two indices of demyelination, nodal protein spreading and Nav1.2 upregulation, were also present chronically after SCI. Nav1.2 was expressed through 10 wpi and nodal protein disorganization was detectable throughout 6 mpi suggesting chronic demyelination, which was confirmed with EM. Thus, demyelination may continue chronically, which could trigger the long-term remyelination response. To examine a potential mechanism that may initiate post-injury myelination, we show that OPC processes contact glutamatergic axons in the injured spinal cord in an activity-dependent manner. Notably, these OPC/axon contacts were increased 2-fold when axons were activated chemogenetically, revealing a potential therapeutic target to enhance post-SCI myelin repair. Collectively, results show the surprisingly dynamic nature of the injured spinal cord over time and that the tissue may be amenable to treatments targeting chronic demyelination.


Assuntos
Doenças Desmielinizantes , Traumatismos da Medula Espinal , Camundongos , Animais , Bainha de Mielina/metabolismo , Proteína Nodal/metabolismo , Traumatismos da Medula Espinal/metabolismo , Axônios/fisiologia , Oligodendroglia/metabolismo , Medula Espinal , Doenças Desmielinizantes/metabolismo
4.
J Magn Magn Mater ; 521(Pt 1)2021 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-33343059

RESUMO

Characterizing the iron distribution in tissue sections is important for several pathologies. Iron content in excised tissue is typically analyzed via histochemical stains, which are dependent on sample preparation and staining protocols. In our recent studies, we examined how magnetic properties of iron can also be exploited to characterize iron distribution in tissue sections in a label free manner. To enable a histomagnetic characterization of iron in a wide variety of available tissues, it is important to extend it to samples routinely prepared for histochemical staining, which often involve use of chemical fixatives. In this study, we took a systematic approach to determine differences between unfixed and formalin-fixed murine spleen tissues in histomagnetic characterization of iron. Superconducting quantum interference device (SQUID) magnetometry and magnetic force microscopy (MFM) were used for macro- and micro-scale histomagnetic characterization. Perl's stain was used for histochemical characterization of ferric (Fe3+) iron on adjacent sections as that used for MFM analysis. While histochemical analysis revealed a substantial difference in the dispersion of the stain between fixed versus unfixed samples, histomagnetic characterization was not dependent on chemical fixation of tissue. The results from this study reveal that histomagnetic characterization of iron is free from staining artifacts which can be present in histochemical analysis.

5.
J Neurosci ; 38(6): 1366-1382, 2018 02 07.
Artigo em Inglês | MEDLINE | ID: mdl-29279310

RESUMO

Spinal cord injury (SCI) induces a centralized fibrotic scar surrounded by a reactive glial scar at the lesion site. The origin of these scars is thought to be perivascular cells entering lesions on ingrowing blood vessels and reactive astrocytes, respectively. However, two NG2-expressing cell populations, pericytes and glia, may also influence scar formation. In the periphery, new blood vessel growth requires proliferating NG2+ pericytes; if this were also true in the CNS, then the fibrotic scar would depend on dividing NG2+ pericytes. NG2+ glial cells (also called oligodendrocyte progenitors or polydendrocytes) also proliferate after SCI and accumulate in large numbers among astrocytes in the glial scar. Their effect there, if any, is unknown. We show that proliferating NG2+ pericytes and glia largely segregate into the fibrotic and glial scars, respectively; therefore, we used a thymidine kinase/ganciclovir paradigm to ablate both dividing NG2+ cell populations to determine whether either scar was altered. Results reveal that loss of proliferating NG2+ pericytes in the lesion prevented intralesion angiogenesis and completely abolished the fibrotic scar. The glial scar was also altered in the absence of acutely dividing NG2+ cells, displaying discontinuous borders and significantly reduced GFAP density. Collectively, these changes enhanced edema, prolonged hemorrhage, and impaired forelimb functional recovery. Interestingly, after halting GCV at 14 d postinjury, scar elements and vessels entered the lesions over the next 7 d, as did large numbers of axons that were not present in controls. Collectively, these data reveal that acutely dividing NG2+ pericytes and glia play fundamental roles in post-SCI tissue remodeling.SIGNIFICANCE STATEMENT Spinal cord injury (SCI) is characterized by formation of astrocytic and fibrotic scars, both of which are necessary for lesion repair. NG2+ cells may influence both scar-forming processes. This study used a novel transgenic mouse paradigm to ablate proliferating NG2+ cells after SCI to better understand their role in repair. For the first time, our data show that dividing NG2+ pericytes are required for post-SCI angiogenesis, which in turn is needed for fibrotic scar formation. Moreover, loss of cycling NG2+ glia and pericytes caused significant multicellular tissue changes, including altered astrocyte responses and impaired functional recovery. This work reveals previously unknown ways in which proliferating NG2+ cells contribute to endogenous repair after SCI.


Assuntos
Antígenos/genética , Axônios/patologia , Cicatriz/genética , Neovascularização Patológica/genética , Proteoglicanas/genética , Traumatismos da Medula Espinal/genética , Traumatismos da Medula Espinal/patologia , Animais , Astrócitos/patologia , Proliferação de Células/efeitos dos fármacos , Cicatriz/patologia , Fibrose/patologia , Proteína Glial Fibrilar Ácida/biossíntese , Proteína Glial Fibrilar Ácida/genética , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Neovascularização Patológica/patologia , Neuroglia/metabolismo , Neuroglia/patologia , Pericitos/metabolismo , Pericitos/patologia , Recuperação de Função Fisiológica/genética
6.
Glia ; 67(11): 2178-2202, 2019 11.
Artigo em Inglês | MEDLINE | ID: mdl-31444938

RESUMO

Spinal cord injury (SCI) affects over 17,000 individuals in the United States per year, resulting in sudden motor, sensory and autonomic impairments below the level of injury. These deficits may be due at least in part to the loss of oligodendrocytes and demyelination of spared axons as it leads to slowed or blocked conduction through the lesion site. It has long been accepted that progenitor cells form new oligodendrocytes after SCI, resulting in the acute formation of new myelin on demyelinated axons. However, the chronicity of demyelination and the functional significance of remyelination remain contentious. Here we review work examining demyelination and remyelination after SCI as well as the current understanding of oligodendrocyte lineage cell responses to spinal trauma, including the surprisingly long-lasting response of NG2+ oligodendrocyte progenitor cells (OPCs) to proliferate and differentiate into new myelinating oligodendrocytes for months after SCI. OPCs are highly sensitive to microenvironmental changes, and therefore respond to the ever-changing post-SCI milieu, including influx of blood, monocytes and neutrophils; activation of microglia and macrophages; changes in cytokines, chemokines and growth factors such as ciliary neurotrophic factor and fibroblast growth factor-2; glutamate excitotoxicity; and axon degeneration and sprouting. We discuss how these changes relate to spontaneous oligodendrogenesis and remyelination, the evidence for and against demyelination being an important clinical problem and if remyelination contributes to motor recovery.


Assuntos
Doenças Desmielinizantes/patologia , Bainha de Mielina/metabolismo , Oligodendroglia/metabolismo , Traumatismos da Medula Espinal/patologia , Animais , Humanos , Remielinização/fisiologia , Traumatismos da Medula Espinal/fisiopatologia , Células-Tronco/fisiologia
7.
J Neurosci ; 37(13): 3568-3587, 2017 03 29.
Artigo em Inglês | MEDLINE | ID: mdl-28264978

RESUMO

Impaired signaling via CX3CR1, the fractalkine receptor, promotes recovery after traumatic spinal contusion injury in mice, a benefit achieved in part by reducing macrophage-mediated injury at the lesion epicenter. Here, we tested the hypothesis that CX3CR1-dependent changes in microglia and macrophage functions also will enhance neuroplasticity, at and several segments below the injury epicenter. New data show that in the presence of inflammatory stimuli, CX3CR1-deficient (CX3CR1-/-) microglia and macrophages adopt a reparative phenotype and increase expression of genes that encode neurotrophic and gliogenic proteins. At the lesion epicenter (mid-thoracic spinal cord), the microenvironment created by CX3CR1-/- microglia/macrophages enhances NG2 cell responses, axon sparing, and sprouting of serotonergic axons. In lumbar spinal cord, inflammatory signaling is reduced in CX3CR1-/- microglia. This is associated with reduced dendritic pathology and improved axonal and synaptic plasticity on ventral horn motor neurons. Together, these data indicate that CX3CR1, a microglia-specific chemokine receptor, is a novel therapeutic target for enhancing neuroplasticity and recovery after SCI. Interventions that specifically target CX3CR1 could reduce the adverse effects of inflammation and augment activity-dependent plasticity and restoration of function. Indeed, limiting CX3CR1-dependent signaling could improve rehabilitation and spinal learning.SIGNIFICANCE STATEMENT Published data show that genetic deletion of CX3CR1, a microglia-specific chemokine receptor, promotes recovery after traumatic spinal cord injury in mice, a benefit achieved in part by reducing macrophage-mediated injury at the lesion epicenter. Data in the current manuscript indicate that CX3CR1 deletion changes microglia and macrophage function, creating a tissue microenvironment that enhances endogenous repair and indices of neuroplasticity, at and several segments below the injury epicenter. Interventions that specifically target CX3CR1 might be used in the future to reduce the adverse effects of intraspinal inflammation and augment activity-dependent plasticity (e.g., rehabilitation) and restoration of function.


Assuntos
Crescimento Neuronal/fisiologia , Receptores de Quimiocinas/metabolismo , Traumatismos da Medula Espinal/patologia , Traumatismos da Medula Espinal/fisiopatologia , Regeneração da Medula Espinal/fisiologia , Sinapses/fisiologia , Animais , Receptor 1 de Quimiocina CX3C , Feminino , Deleção de Genes , Terapia Genética/métodos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Receptores de Quimiocinas/genética , Traumatismos da Medula Espinal/terapia , Sinapses/patologia , Resultado do Tratamento
8.
J Neurosci ; 36(23): 6352-64, 2016 06 08.
Artigo em Inglês | MEDLINE | ID: mdl-27277810

RESUMO

UNLABELLED: Acute oligodendrocyte (OL) death after traumatic spinal cord injury (SCI) is followed by robust neuron-glial antigen 2 (NG2)-positive OL progenitor proliferation and differentiation into new OLs. Inflammatory mediators are prevalent during both phases and can influence the fate of NG2 cells and OLs. Specifically, toll-like receptor (TLR) 4 signaling induces OL genesis in the naive spinal cord, and lack of TLR4 signaling impairs white matter sparing and functional recovery after SCI. Therefore, we hypothesized that TLR4 signaling may regulate oligodendrogenesis after SCI. C3H/HeJ (TLR4-deficient) and control (C3H/HeOuJ) mice received a moderate midthoracic spinal contusion. TLR4-deficient mice showed worse functional recovery and reduced OL numbers compared with controls at 24 h after injury through chronic time points. Acute OL loss was accompanied by reduced ferritin expression, which is regulated by TLR4 and needed for effective iron storage. TLR4-deficient injured spinal cords also displayed features consistent with reduced OL genesis, including reduced NG2 expression, fewer BrdU-positive OLs, altered BMP4 signaling and inhibitor of differentiation 4 (ID4) expression, and delayed myelin phagocytosis. Expression of several factors, including IGF-1, FGF2, IL-1ß, and PDGF-A, was altered in TLR4-deficient injured spinal cords compared with wild types. Together, these data show that TLR4 signaling after SCI is important for OL lineage cell sparing and replacement, as well as in regulating cytokine and growth factor expression. These results highlight new roles for TLR4 in endogenous SCI repair and emphasize that altering the function of a single immune-related receptor can dramatically change the reparative responses of multiple cellular constituents in the injured CNS milieu. SIGNIFICANCE STATEMENT: Myelinating cells of the CNS [oligodendrocytes (OLs)] are killed for several weeks after traumatic spinal cord injury (SCI), but they are replaced by resident progenitor cells. How the concurrent inflammatory signaling affects this endogenous reparative response is unclear. Here, we provide evidence that immune receptor toll-like receptor 4 (TLR4) supports OL lineage cell sparing, long-term OL and OL progenitor replacement, and chronic functional recovery. We show that TLR4 signaling is essential for acute iron storage, regulating cytokine and growth factor expression, and efficient myelin debris clearance, all of which influence OL replacement. Importantly, the current study reveals that a single immune receptor is essential for repair responses after SCI, and the potential mechanisms of this beneficial effect likely change over time after injury.


Assuntos
Regulação da Expressão Gênica/genética , Regeneração Nervosa/genética , Oligodendroglia/fisiologia , Traumatismos da Medula Espinal/patologia , Receptor 4 Toll-Like/deficiência , Animais , Axônios/patologia , Diferenciação Celular/fisiologia , Proliferação de Células/genética , Células Cultivadas , Modelos Animais de Doenças , Comportamento Exploratório/fisiologia , Fatores de Crescimento de Fibroblastos/genética , Fatores de Crescimento de Fibroblastos/metabolismo , Regulação da Expressão Gênica/efeitos dos fármacos , Macrófagos/fisiologia , Masculino , Camundongos , Camundongos Endogâmicos C3H , Camundongos Transgênicos , Regeneração Nervosa/fisiologia , Fagocitose/genética , Recuperação de Função Fisiológica/genética , Recuperação de Função Fisiológica/fisiologia , Traumatismos da Medula Espinal/fisiopatologia , Receptor 4 Toll-Like/genética
9.
Glia ; 65(6): 883-899, 2017 06.
Artigo em Inglês | MEDLINE | ID: mdl-28251686

RESUMO

Oligodendrocyte progenitor cells (OPCs) are present throughout the adult brain and spinal cord and can replace oligodendrocytes lost to injury, aging, or disease. Their differentiation, however, is inhibited by myelin debris, making clearance of this debris an important step for cellular repair following demyelination. In models of peripheral nerve injury, TLR4 activation by lipopolysaccharide (LPS) promotes macrophage phagocytosis of debris. Here we tested whether the novel synthetic TLR4 agonist E6020, a Lipid A mimetic, promotes myelin debris clearance and remyelination in spinal cord white matter following lysolecithin-induced demyelination. In vitro, E6020 induced TLR4-dependent cytokine expression (TNFα, IL1ß, IL-6) and NF-κB signaling, albeit at ∼10-fold reduced potency compared to LPS. Microinjection of E6020 into the intact rat spinal cord gray/white matter border induced macrophage activation, OPC proliferation, and robust oligodendrogenesis, similar to what we described previously using an intraspinal LPS microinjection model. Finally, a single co-injection of E6020 with lysolecithin into spinal cord white matter increased axon sparing, accelerated myelin debris clearance, enhanced Schwann cell infiltration into demyelinated lesions, and increased the number of remyelinated axons. In vitro assays confirmed that direct stimulation of macrophages by E6020 stimulates myelin phagocytosis. These data implicate TLR4 signaling in promoting repair after CNS demyelination, likely by stimulating phagocytic activity of macrophages, sparing axons, recruiting myelinating cells, and promoting remyelination. This work furthers our understanding of immune-myelin interactions and identifies a novel synthetic TLR4 agonist as a potential therapeutic avenue for white matter demyelinating conditions such as spinal cord injury and multiple sclerosis.


Assuntos
Doenças Desmielinizantes/tratamento farmacológico , Bainha de Mielina/efeitos dos fármacos , Fármacos Neuroprotetores/farmacologia , Fosfolipídeos/farmacologia , Medula Espinal/efeitos dos fármacos , Animais , Axônios/efeitos dos fármacos , Axônios/patologia , Axônios/fisiologia , Diferenciação Celular/efeitos dos fármacos , Diferenciação Celular/fisiologia , Proliferação de Células/efeitos dos fármacos , Proliferação de Células/fisiologia , Células Cultivadas , Doenças Desmielinizantes/patologia , Doenças Desmielinizantes/fisiopatologia , Modelos Animais de Doenças , Feminino , Lisofosfatidilcolinas , Macrófagos/efeitos dos fármacos , Macrófagos/fisiologia , Camundongos Endogâmicos C3H , Camundongos Knockout , Bainha de Mielina/patologia , Bainha de Mielina/fisiologia , Células-Tronco Neurais/efeitos dos fármacos , Células-Tronco Neurais/patologia , Células-Tronco Neurais/fisiologia , Fagocitose/efeitos dos fármacos , Fagocitose/fisiologia , Ratos Sprague-Dawley , Medula Espinal/patologia , Medula Espinal/fisiopatologia , Receptor 4 Toll-Like/agonistas , Receptor 4 Toll-Like/genética , Receptor 4 Toll-Like/metabolismo
10.
Nanomedicine ; 13(3): 977-986, 2017 04.
Artigo em Inglês | MEDLINE | ID: mdl-27890658

RESUMO

Evaluation of iron distribution and density in biological tissues is important to understand the pathogenesis of a variety of diseases and the fate of exogenously administered iron-based carriers and contrast agents. Iron distribution in tissues is typically characterized via histochemical (Perl's) stains or immunohistochemistry for ferritin, the major iron storage protein. A more accurate mapping of iron can be achieved via ultrastructural transmission electron microscopy (TEM) based techniques, which involve stringent sample preparation conditions. In this study, we elucidate the capability of magnetic force microscopy (MFM) as a label-free technique to map iron at the nanoscale level in rodent spleen tissue. We complemented and compared our MFM results with those obtained using Perl's staining and TEM. Our results show how MFM mapping corresponded to sizes of iron-rich lysosomes at a resolution comparable to that of TEM. In addition MFM is compatible with tissue sections commonly prepared for routine histology.


Assuntos
Ferro/análise , Magnetismo/métodos , Microscopia de Força Atômica/métodos , Baço/química , Baço/ultraestrutura , Animais , Desenho de Equipamento , Magnetismo/instrumentação , Masculino , Microscopia de Força Atômica/instrumentação , Ratos Sprague-Dawley , Coloração e Rotulagem
11.
J Neurosci ; 35(27): 9966-76, 2015 Jul 08.
Artigo em Inglês | MEDLINE | ID: mdl-26156997

RESUMO

Spinal cord injury (SCI) activates macrophages, endowing them with both reparative and pathological functions. The mechanisms responsible for these divergent functions are unknown but are likely controlled through stochastic activation of different macrophage receptor subtypes. Various danger-associated molecular patterns released from dying cells in the injured spinal cord likely activate distinct subtypes of macrophage pattern recognition receptors, including bacterial toll-like receptors (TLRs) and fungal C-type lectin receptors (e.g., dectin-1). To determine the in vivo consequences of activating these receptors, ligands specific for TLR2 or dectin-1 were microinjected, alone or in combination, into intact spinal cord. Both ligands elicit a florid macrophage reaction; however, only dectin-1 activation causes macrophage-mediated demyelination and axonal injury. Coactivating TLR2 reduced the injurious effects of dectin-1 activation. When injected into traumatically injured spinal cord, TLR2 agonists enhance the endogenous macrophage reaction while conferring neuroprotection. Indeed, dieback of axons was reduced, leading to smaller lesion volumes at the peak of the macrophage response. Moreover, the density of NG2+ cells expressing vimentin increased in and near lesions that were enriched with TLR2-activated macrophages. In dectin-1-null mutant (knock-out) mice, dieback of corticospinal tract axons also is reduced after SCI. Collectively, these data support the hypothesis that the ability of macrophages to create an axon growth-permissive microenvironment or cause neurotoxicity is receptor dependent and it may be possible to exploit this functional dichotomy to enhance CNS repair. SIGNIFICANCE STATEMENT: There is a growing appreciation that macrophages exert diverse functions in the injured and diseased CNS. Indeed, both macrophage-mediated repair and macrophage-mediated injury occur, and often these effector functions are elicited simultaneously. Understanding the mechanisms governing the reparative and pathological properties of activated macrophages is at the forefront of neuroscience research. In this report, using in vitro and in vivo models of relevance to traumatic spinal cord injury (SCI), new data indicate that stochastic activation of toll-like and c-type lectin receptors on macrophages causes neuroprotection or neurotoxicity, respectively. Although this manuscript focuses on SCI, these two innate immune receptor subtypes are also involved in developmental processes and become activated in macrophages that respond to various neurological diseases.


Assuntos
Sistema Nervoso Central/patologia , Lectinas Tipo C/metabolismo , Macrófagos/fisiologia , Traumatismos da Medula Espinal/patologia , Receptor 2 Toll-Like/metabolismo , Animais , Antígeno CD11b/metabolismo , Células Cultivadas , Meios de Cultivo Condicionados/farmacologia , Modelos Animais de Doenças , Feminino , Gânglios Espinais/citologia , Lectinas Tipo C/genética , Lipopeptídeos/farmacologia , Macrófagos/efeitos dos fármacos , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Proteínas do Tecido Nervoso/metabolismo , Neurônios/efeitos dos fármacos , Neurônios/metabolismo , Ratos , Ratos Sprague-Dawley , Receptor 2 Toll-Like/genética
12.
J Neurosci ; 35(3): 1274-90, 2015 Jan 21.
Artigo em Inglês | MEDLINE | ID: mdl-25609641

RESUMO

Adult progenitor cells proliferate in the acutely injured spinal cord and their progeny differentiate into new oligodendrocytes (OLs) that remyelinate spared axons. Whether this endogenous repair continues beyond the first week postinjury (wpi), however, is unknown. Identifying the duration of this response is essential for guiding therapies targeting improved recovery from spinal cord injury (SCI) by enhancing OL survival and/or remyelination. Here, we used two PDGFRα-reporter mouse lines and rats injected with a GFP-retrovirus to assess progenitor fate through 80 d after injury. Surprisingly, new OLs were generated as late as 3 months after injury and their processes ensheathed axons near and distal to the lesion, colocalized with MBP, and abutted Caspr+ profiles, suggesting newly formed myelin. Semithin sections confirmed stereotypical thin OL remyelination and few bare axons at 10 wpi, indicating that demyelination is relatively rare. Astrocytes in chronic tissue expressed the pro-OL differentiation and survival factors CNTF and FGF-2. In addition, pSTAT3+ NG2 cells were present through at least 5 wpi, revealing active signaling of the Jak/STAT pathway in these cells. The progenitor cell fate genes Sox11, Hes5, Id2, Id4, BMP2, and BMP4 were dynamically regulated for at least 4 wpi. Collectively, these data verify that the chronically injured spinal cord is highly dynamic. Endogenous repair, including oligodendrogenesis and remyelination, continues for several months after SCI, potentially in response to growth factors and/or transcription factor changes. Identifying and understanding spontaneous repair processes such as these is important so that beneficial plasticity is not inadvertently interrupted and effort is not exerted to needlessly duplicate ongoing spontaneous repair.


Assuntos
Diferenciação Celular/fisiologia , Doenças Desmielinizantes/fisiopatologia , Regeneração Nervosa/fisiologia , Oligodendroglia/fisiologia , Recuperação de Função Fisiológica/fisiologia , Traumatismos da Medula Espinal/fisiopatologia , Animais , Doenças Desmielinizantes/patologia , Feminino , Masculino , Camundongos , Oligodendroglia/citologia , Ratos , Ratos Sprague-Dawley , Traumatismos da Medula Espinal/patologia
13.
Glia ; 64(2): 214-26, 2016 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-26435164

RESUMO

Astrocytes are extensively coupled through gap junctions into a syncytium. However, the basic role of this major brain network remains largely unknown. Using electrophysiological and computational modeling methods, we demonstrate that the membrane potential (VM) of an individual astrocyte in a hippocampal syncytium, but not in a single, freshly isolated cell preparation, can be well-maintained at quasi-physiological levels when recorded with reduced or K(+) free pipette solutions that alter the K(+) equilibrium potential to non-physiological voltages. We show that an astrocyte's associated syncytium provides powerful electrical coupling, together with ionic coupling at a lesser extent, that equalizes the astrocyte's VM to levels comparable to its neighbors. Functionally, this minimizes VM depolarization attributable to elevated levels of local extracellular K(+) and thereby maintains a sustained driving force for highly efficient K(+) uptake. Thus, gap junction coupling functions to achieve isopotentiality in astrocytic networks, whereby a constant extracellular environment can be powerfully maintained for crucial functions of neural circuits.


Assuntos
Astrócitos/fisiologia , Junções Comunicantes/fisiologia , Potenciais da Membrana/fisiologia , Animais , Cátions Monovalentes/metabolismo , Células Cultivadas , Espaço Extracelular/metabolismo , Feminino , Proteínas de Fluorescência Verde/genética , Proteínas de Fluorescência Verde/metabolismo , Hipocampo/fisiologia , Humanos , Masculino , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Vias Neurais/fisiologia , Potássio/metabolismo , Técnicas de Cultura de Tecidos
14.
Brain Behav Immun ; 49: 246-54, 2015 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-26100488

RESUMO

All individuals experience stress and hormones (e.g., glucocorticoids/GCs) released during stressful events can affect the structure and function of neurons. These effects of stress are best characterized for brain neurons; however, the mechanisms controlling the expression and binding affinity of glucocorticoid receptors in the spinal cord are different than those in the brain. Accordingly, whether stress exerts unique effects on spinal cord neurons, especially in the context of pathology, is unknown. Using a controlled model of focal excitotoxic lower motor neuron injury in rats, we examined the effects of acute or chronic variable stress on spinal cord motor neuron survival and glial activation. New data indicate that stress exacerbates excitotoxic spinal cord motor neuron loss and associated activation of microglia. In contrast, hypertrophy and hyperplasia of astrocytes and NG2+ glia were unaffected or were modestly suppressed by stress. Although excitotoxic lesions cause significant motor neuron loss and stress exacerbates this pathology, overt functional impairment did not develop in the relevant forelimb up to one week post-lesion. These data indicate that stress is a disease-modifying factor capable of altering neuron and glial responses to pathological challenges in the spinal cord.


Assuntos
Microglia/fisiologia , Neurônios Motores/patologia , Traumatismos da Medula Espinal/patologia , Traumatismos da Medula Espinal/fisiopatologia , Estresse Psicológico/patologia , Estresse Psicológico/fisiopatologia , Animais , Proliferação de Células , Modelos Animais de Doenças , Agonistas de Aminoácidos Excitatórios/farmacologia , Feminino , Ácido Glutâmico/farmacologia , Microglia/efeitos dos fármacos , Neurônios Motores/efeitos dos fármacos , Ratos , Ratos Sprague-Dawley , Restrição Física , Medula Espinal/efeitos dos fármacos , Medula Espinal/patologia , Medula Espinal/fisiopatologia
15.
J Neurosci ; 33(41): 16334-45, 2013 Oct 09.
Artigo em Inglês | MEDLINE | ID: mdl-24107964

RESUMO

Recent evidence indicates that inflammatory insults in neonates significantly influenced white matter development and caused behavioral deficits that manifest in young adulthood. The mechanisms underlying these developmental and behavioral complications, however, are not well understood. We hypothesize that acute brain inflammation caused by neonatal infection reduces the bioavailability of iron required for oligodendrocyte maturation and white matter development. Here, we confirm that peripheral Escherichia coli infection in neonates at postnatal day 3 (P3) caused acute brain inflammation that was resolved within 72 h. Nonetheless, transient early life infection (ELI) profoundly influenced behavior, white matter development, and iron homeostasis in the brain. For instance, mice exposed to E. coli as neonates had increased locomotor activity and impaired motor coordination as juveniles (P35) and young adults (P60). In addition, these behavioral deficits were associated with marked hypomyelination and a reduction of oligodendrocytes in subcortical white matter and motor cortex. Moreover, ELI altered transcripts related to cellular sequestration of iron in the brain including hepcidin, ferroportin, and L-ferritin. For example, ELI increased hepcidin mRNA and decreased ferroportin mRNA and protein in the brain at P4, which preceded increased L-ferritin mRNA at P12. Consistent with the mRNA results, L-ferritin protein was robustly increased at P12 specifically in neurons of E. coli infected mice. We interpret these data to indicate that neonatal infection causes significant neuronal sequestration of iron at a time point before myelination. Together, these data indicate a possible role for aberrant neuronal iron storage in neonatal infection-induced disturbances in myelination and behavior.


Assuntos
Comportamento Animal , Encéfalo/patologia , Infecções por Escherichia coli/complicações , Ferro/metabolismo , Bainha de Mielina/patologia , Neurônios/patologia , Animais , Animais Recém-Nascidos , Encéfalo/metabolismo , Infecções por Escherichia coli/metabolismo , Infecções por Escherichia coli/patologia , Imuno-Histoquímica , Inflamação/complicações , Inflamação/metabolismo , Inflamação/patologia , Camundongos , Camundongos Endogâmicos BALB C , Atividade Motora/fisiologia , Transtornos das Habilidades Motoras/etiologia , Neurônios/metabolismo , Reação em Cadeia da Polimerase Via Transcriptase Reversa
16.
Exp Neurol ; 379: 114847, 2024 Jun 08.
Artigo em Inglês | MEDLINE | ID: mdl-38852834

RESUMO

Impaired sensorimotor functions are prominent complications of spinal cord injury (SCI). A clinically important but less obvious consequence is development of metabolic syndrome (MetS), including increased adiposity, hyperglycemia/insulin resistance, and hyperlipidemia. MetS predisposes SCI individuals to earlier and more severe diabetes and cardiovascular disease compared to the general population, which trigger life-threatening complications (e.g., stroke, myocardial infarcts). Although each comorbidity is known to be a risk factor for diabetes and other health problems in obese individuals, their relative contribution or perceived importance in propagating systemic pathology after SCI has received less attention. This could be explained by an incomplete understanding of MetS promoted by SCI compared with that from the canonical trigger diet-induced obesity (DIO). Thus, here we compared metabolic-related outcomes after SCI in lean rats to those of uninjured rats with DIO. Surprisingly, SCI-induced MetS features were equal to or greater than those in obese uninjured rats, including insulin resistance, endotoxemia, hyperlipidemia, liver inflammation and steatosis. Considering the endemic nature of obesity, we also evaluated the effect of premorbid obesity in rats receiving SCI; the combination of DIO + SCI exacerbated MetS and liver pathology compared to either alone, suggesting that obese individuals that sustain a SCI are especially vulnerable to metabolic dysfunction. Notably, premorbid obesity also exacerbated intraspinal lesion pathology and worsened locomotor recovery after SCI. Overall, these results highlight that normal metabolic function requires intact spinal circuitry and that SCI is not just a sensory-motor disorder, but also has significant metabolic consequences.

17.
J Neurosci ; 32(16): 5374-84, 2012 Apr 18.
Artigo em Inglês | MEDLINE | ID: mdl-22514302

RESUMO

Injured CNS tissue often contains elevated iron and its storage protein ferritin, which may exacerbate tissue damage through pro-oxidative mechanisms. Therefore, therapeutic studies often target iron reduction as a neuroprotective strategy. However, iron may be crucial for oligodendrocyte replacement and remyelination. For instance, we previously showed that intraspinal toll-like receptor 4 macrophage activation induced the generation of new ferritin-positive oligodendrocytes, and that iron chelation significantly reduced this oligodendrogenic response. Since macrophages can secrete ferritin, we hypothesize that ferritin is a macrophage-derived signal that promotes oligodendrogenesis. To test this, we microinjected ferritin into intact adult rat spinal cords. Within 6 h, NG2+ progenitor cells proliferated and accumulated ferritin. By 3 d, many of these cells had differentiated into new oligodendrocytes. However, acute neuron and oligodendrocyte toxicity occurred in gray matter. Interestingly, ferritin-positive NG2 cells and macrophages accumulated in the area of cell loss, revealing that NG2 cells thrive in an environment that is toxic to other CNS cells. To test whether ferritin can be transferred from macrophages to NG2 cells in vivo, we loaded macrophages with fluorescent ferritin then transplanted them into intact spinal white matter. Within 3-6 d, proliferating NG2 cells migrated into the macrophage transplants and accumulated fluorescently labeled ferritin. These results show that activated macrophages can be an in vivo source of ferritin for NG2 cells, which induces their proliferation and differentiation into new oligodendrocytes. This work has relevance for conditions in which iron-mediated injury and/or repair likely occur, such as hemorrhage, stroke, spinal cord injury, aging, Parkinson's disease, and Alzheimer's disease.


Assuntos
Antígenos/metabolismo , Proliferação de Células/efeitos dos fármacos , Ferritinas/farmacologia , Macrófagos/metabolismo , Oligodendroglia/efeitos dos fármacos , Proteoglicanas/metabolismo , Medula Espinal/citologia , Animais , Antraquinonas/farmacologia , Bromodesoxiuridina/metabolismo , Antígeno CD11b/metabolismo , Movimento Celular , Relação Dose-Resposta a Droga , Feminino , Ferritinas/metabolismo , Gangliosídeos/metabolismo , Proteína Glial Fibrilar Ácida/metabolismo , Macrófagos/efeitos dos fármacos , Microglia/efeitos dos fármacos , Microinjeções/métodos , Fosfopiruvato Hidratase/metabolismo , Ratos , Ratos Sprague-Dawley , Medula Espinal/efeitos dos fármacos
18.
Clin Immunol ; 149(2): 236-43, 2013 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-23706172

RESUMO

In multiple sclerosis (MS) and experimental autoimmune encephalomyelitis (EAE), relapses are markedly reduced during pregnancy. Exosomes are lipid-bound vesicles and are more abundant in the serum during pregnancy. Using murine EAE, we demonstrate that serum exosomes suppress T cell activation, promote the maturation of oligodendrocyte precursor cells (OPC), and pregnancy exosomes facilitate OPC migration into active CNS lesions. However, exosomes derived from both pregnant and non-pregnant mice reduced the severity of established EAE. Thus, during pregnancy, serum exosomes modulate the immune and central nervous systems and contribute to pregnancy-associated suppression of EAE.


Assuntos
Encefalomielite Autoimune Experimental/metabolismo , Exossomos/metabolismo , Complicações na Gravidez/imunologia , Animais , Feminino , Regulação da Expressão Gênica , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Gravidez , Receptores de Antígenos de Linfócitos T/genética , Receptores de Antígenos de Linfócitos T/metabolismo , Linfócitos T/fisiologia
19.
J Neuroinflammation ; 10: 92, 2013 Jul 23.
Artigo em Inglês | MEDLINE | ID: mdl-23880092

RESUMO

BACKGROUND: Astrocytes are taking the center stage in neurotrauma and neurological diseases as they appear to play a dominant role in the inflammatory processes associated with these conditions. Previously, we reported that inhibiting NF-κB activation in astrocytes, using a transgenic mouse model (GFAP-IκBα-dn mice), results in improved functional recovery, increased white matter preservation and axonal sparing following spinal cord injury (SCI). In the present study, we sought to determine whether this improvement, due to inhibiting NF-κB activation in astrocytes, could be the result of enhanced oligodendrogenesis in our transgenic mice. METHODS: To assess oligodendrogenesis in GFAP-IκBα-dn compared to wild-type (WT) littermate mice following SCI, we used bromodeoxyuridine labeling along with cell-specific immuno-histochemistry, confocal microscopy and quantitative cell counts. To further gain insight into the underlying molecular mechanisms leading to increased white matter, we performed a microarray analysis in naïve and 3 days, 3 and 6 weeks following SCI in GFAP-IκBα-dn and WT littermate mice. RESULTS: Inhibition of astroglial NF-κB in GFAP-IκBα-dn mice resulted in enhanced oligodendrogenesis 6 weeks following SCI and was associated with increased levels of myelin proteolipid protein compared to spinal cord injured WT mice. The microarray data showed a large number of differentially expressed genes involved in inflammatory and immune response between WT and transgenic mice. We did not find any difference in the number of microglia/leukocytes infiltrating the spinal cord but did find differences in their level of expression of toll-like receptor 4. We also found increased expression of the chemokine receptor CXCR4 on oligodendrocyte progenitor cells and mature oligodendrocytes in the transgenic mice. Finally TNF receptor 2 levels were significantly higher in the transgenic mice compared to WT following injury. CONCLUSIONS: These studies suggest that one of the beneficial roles of blocking NF-κB in astrocytes is to promote oligodendrogenesis through alteration of the inflammatory environment.


Assuntos
Astrócitos/metabolismo , NF-kappa B/antagonistas & inibidores , NF-kappa B/fisiologia , Neurogênese/fisiologia , Oligodendroglia/fisiologia , Traumatismos da Medula Espinal/metabolismo , Animais , Astrócitos/patologia , Feminino , Inflamação/metabolismo , Inflamação/patologia , Camundongos , Camundongos Transgênicos , Oligodendroglia/patologia , Traumatismos da Medula Espinal/patologia , Regulação para Cima/fisiologia
20.
JCI Insight ; 8(14)2023 07 24.
Artigo em Inglês | MEDLINE | ID: mdl-37347545

RESUMO

Vincristine is a widely used chemotherapeutic drug for the treatment of multiple malignant diseases that causes a dose-limiting peripheral neurotoxicity. There is no clinically effective preventative treatment for vincristine-induced sensory peripheral neurotoxicity (VIPN), and mechanistic details of this side effect remain poorly understood. We hypothesized that VIPN is dependent on transporter-mediated vincristine accumulation in dorsal root ganglion neurons. Using a xenobiotic transporter screen, we identified OATP1B3 as a neuronal transporter regulating the uptake of vincristine. In addition, genetic or pharmacological inhibition of the murine orthologue transporter OATP1B2 protected mice from various hallmarks of VIPN - including mechanical allodynia, thermal hyperalgesia, and changes in digital maximal action potential amplitudes and neuronal morphology - without negatively affecting plasma levels or antitumor effects of vincristine. Finally, we identified α-tocopherol from an untargeted metabolomics analysis as a circulating endogenous biomarker of neuronal OATP1B2 function, and it could serve as a companion diagnostic to guide dose selection of OATP1B-type transport modulators given in combination with vincristine to prevent VIPN. Collectively, our findings shed light on the fundamental basis of VIPN and provide a rationale for the clinical development of transporter inhibitors to prevent this debilitating side effect.


Assuntos
Doenças do Sistema Nervoso Periférico , Xenobióticos , Camundongos , Animais , Vincristina/toxicidade , Doenças do Sistema Nervoso Periférico/induzido quimicamente , Doenças do Sistema Nervoso Periférico/tratamento farmacológico , Doenças do Sistema Nervoso Periférico/prevenção & controle , Hiperalgesia/induzido quimicamente , Gânglios Espinais , Proteínas de Membrana Transportadoras
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA