Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Assunto da revista
País de afiliação
Intervalo de ano de publicação
1.
Proc Natl Acad Sci U S A ; 121(3): e2300096121, 2024 Jan 16.
Artigo em Inglês | MEDLINE | ID: mdl-38194457

RESUMO

The prevalence of overweight and obesity continues to rise in the population worldwide. Because it is an important predisposing factor for cancer, cardiovascular diseases, diabetes mellitus, and COVID-19, obesity reduces life expectancy. Adipose tissue (AT), the main fat storage organ with endocrine capacity, plays fundamental roles in systemic metabolism and obesity-related diseases. Dysfunctional AT can induce excess or reduced body fat (lipodystrophy). Dido1 is a marker gene for stemness; gene-targeting experiments compromised several functions ranging from cell division to embryonic stem cell differentiation, both in vivo and in vitro. We report that mutant mice lacking the DIDO N terminus show a lean phenotype. This consists of reduced AT and hypolipidemia, even when mice are fed a high-nutrient diet. DIDO mutation caused hypothermia due to lipoatrophy of white adipose tissue (WAT) and dermal fat thinning. Deep sequencing of the epididymal white fat (Epi WAT) transcriptome supported Dido1 control of the cellular lipid metabolic process. We found that, by controlling the expression of transcription factors such as C/EBPα or PPARγ, Dido1 is necessary for adipocyte differentiation, and that restoring their expression reestablished adipogenesis capacity in Dido1 mutants. Our model differs from other lipodystrophic mice and could constitute a new system for the development of therapeutic intervention in obesity.


Assuntos
Adipogenia , Lipodistrofia , Animais , Camundongos , Adipogenia/genética , Diferenciação Celular , Dieta , Obesidade/genética , Sobrepeso
2.
Front Endocrinol (Lausanne) ; 15: 1340465, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38510698

RESUMO

Context: Over 1.9 billion adult people have overweight or obesity. Considered as a chronic disease itself, obesity is associated with several comorbidities. Chronic pain affects approximately 60 million people and its connection with obesity has been displayed in several studies. However, controversial results showing both lower and higher pain thresholds in subjects with obesity compared to individuals with normal weight and the different parameters used to define such association (e.g., pain severity, frequency or duration) make it hard to draw straight forward conclusions in the matter. The objective of this article is to examine the relationship between overweight and obesity (classified with BMI as recommended by WHO) and self-perceived pain intensity in adults. Methods: A literature search was conducted following PRISMA guidelines using the databases CINAHL, Cochrane Library, EMBASE, PEDro, PubMed, Scopus and Web of Science to identify original studies that provide BMI values and their associated pain intensity assessed by self-report scales. Self-report pain scores were normalized and pooled within meta-analyses. The Cochrane's Q test and I2 index were used to clarify the amount of heterogeneity; meta-regression was performed to explore the relationship between each outcome and the risk of bias. Results: Of 2194 studies, 31 eligible studies were identified and appraised, 22 of which provided data for a quantitative analysis. The results herein suggested that adults with excess weight (BMI ≥ 25.0) or obesity (BMI ≥ 30.0) but not with overweight (pre-obesity) alone (BMI 25.0-29.9), are more likely to report greater intensities of pain than individuals of normal weight (BMI 18.5-24.9). Subgroup analyses regarding the pathology of the patients showed no statistically significant differences between groups. Also, influence of age in the effect size, evaluated by meta-regression, was only observed in one of the four analyses. Furthermore, the robustness of the findings was supported by two different sensitivity analyses. Conclusion: Subjects with obesity and excess weight, but not overweight, reported greater pain intensities than individuals with normal weight. This finding encourages treatment of obesity as a component of pain management. More research is required to better understand the mechanisms of these differences and the clinical utility of the findings. Systematic Review Registration: https://doi.org/10.17605/OSF.IO/RF2G3, identifier OSF.IO/RF2G3.


Assuntos
Obesidade , Sobrepeso , Humanos , Sobrepeso/complicações , Sobrepeso/epidemiologia , Obesidade/complicações , Obesidade/epidemiologia , Adulto , Índice de Massa Corporal , Dor Crônica/epidemiologia , Dor/epidemiologia , Dor/etiologia , Medição da Dor/métodos
3.
Front Endocrinol (Lausanne) ; 15: 1346317, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38544694

RESUMO

Introduction: Obesity is a chronic condition associated with low-grade inflammation mainly due to immune cell infiltration of white adipose tissue (WAT). WAT is distributed into two main depots: subcutaneous WAT (sWAT) and visceral WAT (vWAT), each with different biochemical features and metabolic roles. Proinflammatory cytokines including interleukin (IL)-16 are secreted by both adipocytes and infiltrated immune cells to upregulate inflammation. IL-16 has been widely studied in the peripheral proinflammatory immune response; however, little is known about its role in adipocytes in the context of obesity. Aim & Methods: We aimed to study the levels of IL-16 in WAT derived from sWAT and vWAT depots of humans with obesity and the role of this cytokine in palmitate-exposed 3T3-L1 adipocytes. Results: The results demonstrated that IL-16 expression was higher in vWAT compared with sWAT in individuals with obesity. In addition, IL-16 serum levels were higher in patients with obesity compared with normal-weight individuals, increased at 6 months after bariatric surgery, and at 12 months after surgery decreased to levels similar to before the intervention. Our in vitro models showed that IL-16 could modulate markers of adipogenesis (Pref1), lipid metabolism (Plin1, Cd36, and Glut4), fibrosis (Hif1a, Col4a, Col6a, and Vegf), and inflammatory signaling (IL6) during adipogenesis and in mature adipocytes. In addition, lipid accumulation and glycerol release assays suggested lipolysis alteration. Discussion: Our results suggest a potential role of IL-16 in adipogenesis, lipid and glucose homeostasis, fibrosis, and inflammation in an obesity context.


Assuntos
Adipogenia , Interleucina-16 , Humanos , Fibrose , Inflamação/metabolismo , Lipídeos , Obesidade/metabolismo
4.
Eur J Endocrinol ; 190(3): 201-210, 2024 Mar 02.
Artigo em Inglês | MEDLINE | ID: mdl-38375549

RESUMO

OBJECTIVE: T lymphocytes from visceral and subcutaneous white adipose tissues (vWAT and sWAT, respectively) can have opposing roles in the systemic metabolic changes associated with obesity. However, few studies have focused on this subject. Claudin-1 (CLDN1) is a protein involved canonically in tight junctions and tissue paracellular permeability. We evaluated T-lymphocyte gene expression in vWAT and sWAT and in the whole adipose depots in human samples. METHODS: A Clariom D-based transcriptomic analysis was performed on T lymphocytes magnetically separated from vWAT and sWAT from patients with obesity (Cohort 1; N = 11). Expression of candidate genes resulting from that analysis was determined in whole WAT from individuals with and without obesity (Cohort 2; patients with obesity: N = 13; patients without obesity: N = 14). RESULTS: We observed transcriptional differences between T lymphocytes from sWAT compared with vWAT. Specifically, CLDN1 expression was found to be dramatically induced in vWAT T cells relative to those isolated from sWAT in patients with obesity. CLDN1 was also induced in obesity in vWAT and its expression correlates with genes involved in inflammation, fibrosis, and adipogenesis. CONCLUSION: These results suggest that CLDN1 is a novel marker induced in obesity and differentially expressed in T lymphocytes infiltrated in human vWAT as compared with sWAT. This protein may have a crucial role in the crosstalk between T lymphocytes and other adipose tissue cells and may contribute to inflammation, fibrosis, and alter homeostasis and promote metabolic disease in obesity.


Assuntos
Tecido Adiposo Branco , Claudina-1 , Obesidade , Humanos , Tecido Adiposo Branco/metabolismo , Diferenciação Celular , Claudina-1/metabolismo , Fibrose , Inflamação/metabolismo , Obesidade/complicações , Linfócitos T/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA