Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 37
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Nature ; 574(7777): 259-263, 2019 10.
Artigo em Inglês | MEDLINE | ID: mdl-31554973

RESUMO

Chikungunya virus (CHIKV) is a re-emerging alphavirus that is transmitted to humans by mosquito bites and causes musculoskeletal and joint pain1,2. Despite intensive investigations, the human cellular factors that are critical for CHIKV infection remain unknown, hampering the understanding of viral pathogenesis and the development of anti-CHIKV therapies. Here we identified the four-and-a-half LIM domain protein 1 (FHL1)3 as a host factor that is required for CHIKV permissiveness and pathogenesis in humans and mice. Ablation of FHL1 expression results in the inhibition of infection by several CHIKV strains and o'nyong-nyong virus, but not by other alphaviruses and flaviviruses. Conversely, expression of FHL1 promotes CHIKV infection in cells that do not normally express it. FHL1 interacts directly with the hypervariable domain of the nsP3 protein of CHIKV and is essential for the replication of viral RNA. FHL1 is highly expressed in CHIKV-target cells and is particularly abundant in muscles3,4. Dermal fibroblasts and muscle cells derived from patients with Emery-Dreifuss muscular dystrophy that lack functional FHL15 are resistant to CHIKV infection. Furthermore,  CHIKV infection  is undetectable in Fhl1-knockout mice. Overall, this study shows that FHL1 is a key factor expressed by the host that enables CHIKV infection and identifies the interaction between nsP3 and FHL1 as a promising target for the development of anti-CHIKV therapies.


Assuntos
Febre de Chikungunya/virologia , Vírus Chikungunya/patogenicidade , Fatores Celulares Derivados do Hospedeiro/metabolismo , Interações Hospedeiro-Patógeno , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Proteínas com Domínio LIM/metabolismo , Proteínas Musculares/metabolismo , Animais , Células Cultivadas , Febre de Chikungunya/tratamento farmacológico , Vírus Chikungunya/efeitos dos fármacos , Vírus Chikungunya/genética , Vírus Chikungunya/crescimento & desenvolvimento , Feminino , Fibroblastos/virologia , Células HEK293 , Fatores Celulares Derivados do Hospedeiro/genética , Humanos , Peptídeos e Proteínas de Sinalização Intracelular/deficiência , Peptídeos e Proteínas de Sinalização Intracelular/genética , Proteínas com Domínio LIM/deficiência , Proteínas com Domínio LIM/genética , Masculino , Camundongos , Proteínas Musculares/deficiência , Proteínas Musculares/genética , Mioblastos/virologia , Vírus O'nyong-nyong/crescimento & desenvolvimento , Vírus O'nyong-nyong/patogenicidade , Ligação Proteica , RNA Viral/biossíntese , Proteínas não Estruturais Virais/genética , Proteínas não Estruturais Virais/metabolismo , Replicação Viral
2.
J Virol ; 96(7): e0196221, 2022 04 13.
Artigo em Inglês | MEDLINE | ID: mdl-35266803

RESUMO

Dengue virus (DENV) is a mosquito-borne flavivirus responsible for dengue disease, a major human health concern for which no effective treatment is available. DENV relies heavily on the host cellular machinery for productive infection. Here, we show that the scaffold protein RACK1, which is part of the DENV replication complex, mediates infection by binding to the 40S ribosomal subunit. Mass spectrometry analysis of RACK1 partners coupled to an RNA interference screen-identified Vigilin and SERBP1 as DENV host-dependency factors. Both are RNA-binding proteins that interact with the DENV genome. Genetic ablation of Vigilin or SERBP1 rendered cells poorly susceptible to DENV, as well as related flaviviruses, by hampering the translation and replication steps. Finally, we established that a Vigilin or SERBP1 mutant lacking RACK1 binding but still interacting with the viral RNA is unable to mediate DENV infection. We propose that RACK1 recruits Vigilin and SERBP1, linking the DENV genome to the translation machinery for efficient infection. IMPORTANCE We recently identified the scaffolding RACK1 protein as an important host-dependency factor for dengue virus (DENV), a positive-stranded RNA virus responsible for the most prevalent mosquito-borne viral disease worldwide. Here, we have performed the first RACK1 interactome in human cells and identified Vigilin and SERBP1 as DENV host-dependency factors. Both are RNA-binding proteins that interact with the DENV RNA to regulate viral replication. Importantly, Vigilin and SERBP1 interact with RACK1 and the DENV viral RNA (vRNA) to mediate viral replication. Overall, our results suggest that RACK1 acts as a binding platform at the surface of the 40S ribosomal subunit to recruit Vigilin and SERBP1, which may therefore function as linkers between the viral RNA and the translation machinery to facilitate infection.


Assuntos
Vírus da Dengue , Dengue , Proteínas de Ligação a RNA , Animais , Dengue/fisiopatologia , Vírus da Dengue/fisiologia , Interações entre Hospedeiro e Microrganismos/fisiologia , Humanos , Proteínas de Neoplasias/metabolismo , RNA Viral/genética , Proteínas de Ligação a RNA/genética , Proteínas de Ligação a RNA/metabolismo , Receptores de Quinase C Ativada/metabolismo , Replicação Viral
3.
Antimicrob Agents Chemother ; 66(8): e0008322, 2022 08 16.
Artigo em Inglês | MEDLINE | ID: mdl-35861550

RESUMO

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is the infectious agent that has caused the current coronavirus disease (COVID) pandemic. Viral infection relies on the viral S (spike) protein/cellular receptor ACE2 interaction. Disrupting this interaction would lead to early blockage of viral replication. To identify chemical tools to further study these functional interfaces, 139,146 compounds from different chemical libraries were screened through an S/ACE2 in silico virtual molecular model. The best compounds were selected for further characterization using both cellular and biochemical approaches, reiterating SARS-CoV-2 entry and the S/ACE2 interaction. We report here two selected hits, bis-indolyl pyridine AB-00011778 and triphenylamine AB-00047476. Both of these compounds can block the infectivity of lentiviral vectors pseudotyped with the SARS-CoV-2 S protein as well as wild-type and circulating variant SARS-CoV-2 strains in various human cell lines, including pulmonary cells naturally susceptible to infection. AlphaLISA and biolayer interferometry confirmed a direct inhibitory effect of these drugs on the S/ACE2 association. A specific study of the AB-00011778 inhibitory properties showed that this drug inhibits viral replication with a 50% effective concentration (EC50) between 0.1 and 0.5 µM depending on the cell lines. Molecular docking calculations of the interaction parameters of the molecules within the S/ACE2 complex from both wild-type and circulating variants of the virus showed that the molecules may target multiple sites within the S/ACE2 interface. Our work indicates that AB-00011778 constitutes a good tool for modulating this interface and a strong lead compound for further therapeutic purposes.


Assuntos
Tratamento Farmacológico da COVID-19 , SARS-CoV-2 , Enzima de Conversão de Angiotensina 2 , Humanos , Simulação de Acoplamento Molecular , Peptidil Dipeptidase A/química , Peptidil Dipeptidase A/metabolismo , Peptidil Dipeptidase A/farmacologia , Ligação Proteica , Piridinas/farmacologia , Glicoproteína da Espícula de Coronavírus/metabolismo , Internalização do Vírus
4.
EMBO J ; 36(12): 1653-1668, 2017 06 14.
Artigo em Inglês | MEDLINE | ID: mdl-28473450

RESUMO

The cytopathic effects of Zika virus (ZIKV) are poorly characterized. Innate immunity controls ZIKV infection and disease in most infected patients through mechanisms that remain to be understood. Here, we studied the morphological cellular changes induced by ZIKV and addressed the role of interferon-induced transmembrane proteins (IFITM), a family of broad-spectrum antiviral factors, during viral replication. We report that ZIKV induces massive vacuolization followed by "implosive" cell death in human epithelial cells, primary skin fibroblasts and astrocytes, a phenomenon which is exacerbated when IFITM3 levels are low. It is reminiscent of paraptosis, a caspase-independent, non-apoptotic form of cell death associated with the formation of large cytoplasmic vacuoles. We further show that ZIKV-induced vacuoles are derived from the endoplasmic reticulum (ER) and dependent on the PI3K/Akt signaling axis. Inhibiting the Sec61 ER translocon in ZIKV-infected cells blocked vacuole formation and viral production. Our results provide mechanistic insight behind the ZIKV-induced cytopathic effect and indicate that IFITM3, by acting as a gatekeeper for incoming virus, restricts virus takeover of the ER and subsequent cell death.


Assuntos
Astrócitos/virologia , Morte Celular , Efeito Citopatogênico Viral , Células Epiteliais/virologia , Fibroblastos/virologia , Vacúolos/metabolismo , Zika virus/patogenicidade , Astrócitos/citologia , Astrócitos/fisiologia , Células Cultivadas , Retículo Endoplasmático/metabolismo , Células Epiteliais/citologia , Células Epiteliais/fisiologia , Fibroblastos/citologia , Fibroblastos/fisiologia , Humanos , Proteínas de Membrana/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Proteínas de Ligação a RNA/metabolismo , Canais de Translocação SEC/metabolismo , Transdução de Sinais
5.
J Virol ; 94(7)2020 03 17.
Artigo em Inglês | MEDLINE | ID: mdl-31915280

RESUMO

Dengue virus (DENV) is a mosquito-borne flavivirus responsible for dengue disease, a major human health concern for which no specific therapies are available. Like other viruses, DENV relies heavily on the host cellular machinery for productive infection. In this study, we performed a genome-wide CRISPR-Cas9 screen using haploid HAP1 cells to identify host genes important for DENV infection. We identified DPM1 and -3, two subunits of the endoplasmic reticulum (ER) resident dolichol-phosphate mannose synthase (DPMS) complex, as host dependency factors for DENV and other related flaviviruses, such as Zika virus (ZIKV). The DPMS complex catalyzes the synthesis of dolichol-phosphate mannose (DPM), which serves as mannosyl donor in pathways leading to N-glycosylation, glycosylphosphatidylinositol (GPI) anchor biosynthesis, and C- or O-mannosylation of proteins in the ER lumen. Mutation in the DXD motif of DPM1, which is essential for its catalytic activity, abolished DPMS-mediated DENV infection. Similarly, genetic ablation of ALG3, a mannosyltransferase that transfers mannose to lipid-linked oligosaccharide (LLO), rendered cells poorly susceptible to DENV. We also established that in cells deficient for DPMS activity, viral RNA amplification is hampered and truncated oligosaccharides are transferred to the viral prM and E glycoproteins, affecting their proper folding. Overall, our study provides new insights into the host-dependent mechanisms of DENV infection and supports current therapeutic approaches using glycosylation inhibitors to treat DENV infection.IMPORTANCE Dengue disease, which is caused by dengue virus (DENV), has emerged as the most important mosquito-borne viral disease in humans and is a major global health concern. DENV encodes only few proteins and relies on the host cell machinery to accomplish its life cycle. The identification of the host factors important for DENV infection is needed to propose new targets for antiviral intervention. Using a genome-wide CRISPR-Cas9 screen, we identified DPM1 and -3, two subunits of the DPMS complex, as important host factors for the replication of DENV as well as other related viruses such as Zika virus. We established that DPMS complex plays dual roles during viral infection, both regulating viral RNA replication and promoting viral structural glycoprotein folding/stability. These results provide insights into the host molecules exploited by DENV and other flaviviruses to facilitate their life cycle.


Assuntos
Sistemas CRISPR-Cas , Vírus da Dengue/fisiologia , Dengue/virologia , Manosiltransferases/metabolismo , Animais , Chlorocebus aethiops , Retículo Endoplasmático/metabolismo , Fibroblastos/metabolismo , Glicoproteínas/metabolismo , Glicosilação , Glicosilfosfatidilinositóis/metabolismo , Células HEK293 , Humanos , Manose/química , Oligossacarídeos/química , RNA Guia de Cinetoplastídeos/metabolismo , RNA Viral/química , Células Vero , Replicação Viral
6.
J Virol ; 90(1): 92-102, 2016 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-26468529

RESUMO

UNLABELLED: Dengue virus (DENV) is the etiological agent of the major human arboviral disease. We previously demonstrated that the TIM and TAM families of phosphatidylserine (PtdSer) receptors involved in the phagocytosis of apoptotic cells mediate DENV entry into target cells. We show here that human CD300a, a recently identified phospholipid receptor, also binds directly DENV particles and enhances viral entry. CD300a facilitates infection of the four DENV serotypes, as well as of other mosquito-borne viruses such as West Nile virus and Chikungunya virus. CD300a acts as an attachment factor that enhances DENV internalization through clathrin-mediated endocytosis. CD300a recognizes predominantly phosphatidylethanolamine (PtdEth) and to a lesser extent PtdSer associated with viral particles. Mutation of residues in the IgV domain critical for phospholipid binding abrogate CD300a-mediated enhancement of DENV infection. Finally, we show that CD300a is expressed at the surface of primary macrophages and anti-CD300a polyclonal antibodies partially inhibited DENV infection of these cells. Overall, these data indicate that CD300a is a novel DENV binding receptor that recognizes PtdEth and PtdSer present on virions and enhance infection. IMPORTANCE: Dengue disease, caused by dengue virus (DENV), has emerged as the most important mosquito-borne viral disease of humans and is a major global health concern. The molecular bases of DENV-host cell interactions during virus entry are poorly understood, hampering the discovery of new targets for antiviral intervention. We recently discovered that the TIM and TAM proteins, two receptor families involved in the phosphatidylserine (PtdSer)-dependent phagocytic removal of apoptotic cells, interact with DENV particles-associated PtdSer through a mechanism that mimics the recognition of apoptotic cells and mediate DENV infection. In this study, we show that CD300a, a novel identified phospholipid receptor, mediates DENV infection. CD300a-dependent DENV infection relies on the direct recognition of phosphatidylethanolamine and to a lesser extent PtdSer associated with viral particles. This study provides novel insights into the mechanisms that mediate DENV entry and reinforce the concept that DENV uses an apoptotic mimicry strategy for viral entry.


Assuntos
Antígenos CD/metabolismo , Vírus da Dengue/fisiologia , Interações Hospedeiro-Patógeno , Receptores Imunológicos/metabolismo , Receptores Virais/metabolismo , Internalização do Vírus , Linhagem Celular , Vírus Chikungunya/fisiologia , Endocitose , Humanos , Macrófagos/química , Proteínas de Membrana/análise , Fosfatidiletanolaminas/metabolismo , Fosfatidilserinas/metabolismo , Ligação Proteica , Vírus do Nilo Ocidental/fisiologia
7.
Virologie (Montrouge) ; 18(6): 325-336, 2014 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-33065925

RESUMO

Apoptotic cells clearance, or efferocytosis, is an essential and highly conserved cellular process mainly based on the recognition of the phosphatidylserine (PtdSer) exposed on the surface of apoptotic bodies by the phagocyte. Since a decade, several studies have shown that many viruses can hijack this biological process by exposing PtdSer on their viral envelope to facilitate infection. This apoptotic mimicry concept has been recently strengthened by recent discoveries showing that multiple enveloped virus families bind directly or indirectly to PtdSer receptors in order to initiate their infectious cycle. This review focus on recent advances in this topic and discuss about PtdSer receptors function, especially TIM (T-Cell Immunoglobulin and Mucin domain) and TAM (Tyro3, Axl, Mer) families, during infection and viral entry.

8.
Methods Mol Biol ; 2824: 203-219, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39039415

RESUMO

Like all the RNA viruses, Rift Valley fever virus (RVFV) encodes only few viral proteins and relies heavily on the host cellular machinery for productive infection. This dependence creates a potential "Achille's heel" that may be exploited to develop new approaches to treat RVFV infection. The recent development of lentiviral sgRNAs pool has enabled the creation of genome-scale CRISPR-Cas9 knockout libraries that has been used to identify host factors required for virus replication. In this chapter, we describe the preparation and execution of a pooled CRISPR-Cas9 loss-of-function screen using virus-induced cell death phenotypic readout. Using this technique, we outline a strategy for the identification of host factors essential for important human emerging viruses such as RVFV.


Assuntos
Sistemas CRISPR-Cas , Vírus da Febre do Vale do Rift , Humanos , Vírus da Febre do Vale do Rift/genética , Replicação Viral/genética , Interações Hospedeiro-Patógeno/genética , Técnicas de Inativação de Genes , RNA Guia de Sistemas CRISPR-Cas/genética
9.
Nat Commun ; 15(1): 640, 2024 Jan 20.
Artigo em Inglês | MEDLINE | ID: mdl-38245532

RESUMO

Considerable progress has been made in understanding the molecular host-virus battlefield during SARS-CoV-2 infection. Nevertheless, the assembly and egress of newly formed virions are less understood. To identify host proteins involved in viral morphogenesis, we characterize the proteome of SARS-CoV-2 virions produced from A549-ACE2 and Calu-3 cells, isolated via ultracentrifugation on sucrose cushion or by ACE-2 affinity capture. Bioinformatic analysis unveils 92 SARS-CoV-2 virion-associated host factors, providing a valuable resource to better understand the molecular environment of virion production. We reveal that G3BP1 and G3BP2 (G3BP1/2), two major stress granule nucleators, are embedded within virions and unexpectedly favor virion production. Furthermore, we show that G3BP1/2 participate in the formation of cytoplasmic membrane vesicles, that are likely virion assembly sites, consistent with a proviral role of G3BP1/2 in SARS-CoV-2 dissemination. Altogether, these findings provide new insights into host factors required for SARS-CoV-2 assembly with potential implications for future therapeutic targeting.


Assuntos
COVID-19 , SARS-CoV-2 , Humanos , SARS-CoV-2/metabolismo , Replicação Viral , DNA Helicases/metabolismo , Proteômica , Proteínas com Motivo de Reconhecimento de RNA/metabolismo , COVID-19/metabolismo , RNA Helicases/metabolismo , Proteínas de Ligação a Poli-ADP-Ribose/metabolismo , Montagem de Vírus , Vírion/metabolismo
10.
J Virol ; 85(6): 2980-9, 2011 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-21191016

RESUMO

The ubiquitin ligase CBLL1 (also known as HAKAI) has been proposed to be a critical cellular factor exploited by West Nile virus (WNV) for productive infection. CBLL1 has emerged as a major hit in a recent RNA interference screen designed to identify cellular factors required for the early stages of the WNV life cycle. Follow-up experiments showed that HeLa cells knocked down for CBLL1 by a small interfering RNA (siRNA) failed to internalize WNV particles and resisted infection. Furthermore, depletion of a free-ubiquitin pool by the proteasome inhibitor MG132 abolished WNV endocytosis, suggesting that CBLL1 acts in concert with the ubiquitin proteasome system to mediate virus internalization. Here, we examined the effect of CBLL1 knockdown and proteasome inhibitors on infection by WNV and other flaviviruses. We identified new siRNAs that repress the CBLL1 protein and strongly inhibit the endocytosis of Listeria monocytogenes, a bacterial pathogen known to require CBLL1 to invade host cells. Strikingly, however, we detected efficient WNV, dengue virus, and yellow fever virus infection of human cells, despite potent downregulation of CBLL1 by RNA interference. In addition, we found that the proteasome inhibitors MG132 and lactacystin did not affect WNV internalization but strongly repressed flavivirus RNA translation and replication. Together, these data do not support a requirement for CBLL1 during flavivirus entry and rather suggest an essential role of the ubiquitin/proteasome pathway for flavivirus genome amplification.


Assuntos
Vírus da Dengue/fisiologia , Ubiquitina-Proteína Ligases/metabolismo , Ubiquitina/metabolismo , Internalização do Vírus , Replicação Viral , Vírus do Nilo Ocidental/fisiologia , Vírus da Febre Amarela/fisiologia , Acetilcisteína/análogos & derivados , Acetilcisteína/metabolismo , Técnicas de Silenciamento de Genes , Células HeLa , Humanos , Leupeptinas/metabolismo , Listeria monocytogenes/patogenicidade , Complexo de Endopeptidases do Proteassoma/metabolismo , Inibidores de Proteassoma , RNA Interferente Pequeno/metabolismo , Ubiquitina-Proteína Ligases/antagonistas & inibidores
11.
J Infect Dis ; 203(9): 1316-23, 2011 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-21459818

RESUMO

BACKGROUND: The presence and origin of endemic foci of human T-lymphotropic virus type 2 (HTLV2) infection in Africa remain a matter of debate. METHODS: To better appreciate such determinants, we performed a survey of 1918 inhabitants from Cameroon forest areas, including 1051 Bakola Pygmies and 867 Bantus. RESULTS: The overall HTLV-1/2 seroprevalence was 4% (49 cases of HTLV-1 and 27 cases of HTLV-2 infection). Both infections were mainly restricted to the Bakola Pygmies, with surprisingly no HTLV-2 infections in the Bantu population. Both HTLV-1 and HTLV-2 seroprevalences increased with age. There was evidence of ongoing HTLV-2 transmission in this population. Lymphoid T cell lines producing HTLV-2 were established. HTLV-2 long terminal repeat sequences (672 base pairs) obtained from 7 infected Bakola were highly similar to each other (<1% nucleotide divergence), as well as to Amerindian HTLV-2B strains. Analyses on a complete sequence (8954 base pairs) confirmed that it was a typical HTLV-2 subtype B strain. Along with molecular clock analysis, these data strongly suggest that HTLV-2 has been endemic in the Bakola Pygmy population for a long time. CONCLUSIONS: This study demonstrates clearly an HTLV-2 endemicity with ongoing transmission in an African population. Furthermore, it give insights into central questions regarding the origins and evolution rate of HTLV-2 and the migrations of infected populations.


Assuntos
Doenças Endêmicas , Infecções por HTLV-II/epidemiologia , Vírus Linfotrópico T Tipo 2 Humano/isolamento & purificação , Adolescente , Adulto , Idoso , Idoso de 80 Anos ou mais , Camarões/epidemiologia , Criança , Pré-Escolar , Análise por Conglomerados , Feminino , Vírus Linfotrópico T Tipo 1 Humano/isolamento & purificação , Vírus Linfotrópico T Tipo 2 Humano/genética , Humanos , Masculino , Pessoa de Meia-Idade , Epidemiologia Molecular , Dados de Sequência Molecular , Grupos Populacionais , RNA Viral/genética , Análise de Sequência de DNA , Homologia de Sequência , Estudos Soroepidemiológicos , Sequências Repetidas Terminais , Adulto Jovem
12.
Cell Rep ; 39(4): 110744, 2022 04 26.
Artigo em Inglês | MEDLINE | ID: mdl-35477000

RESUMO

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is the causative agent of the COVID-19 pandemic, which has led to a devastating global health crisis. The emergence of variants that escape neutralizing responses emphasizes the urgent need to deepen our understanding of SARS-CoV-2 biology. Using a comprehensive identification of RNA-binding proteins (RBPs) by mass spectrometry (ChIRP-MS) approach, we identify 107 high-confidence cellular factors that interact with the SARS-CoV-2 genome during infection. By systematically knocking down their expression in human lung epithelial cells, we find that the majority of the identified RBPs are SARS-CoV-2 proviral factors. In particular, we show that HNRNPA2B1, ILF3, QKI, and SFPQ interact with the SARS-CoV-2 genome and promote viral RNA amplification. Our study provides valuable resources for future investigations into the mechanisms of SARS-CoV-2 replication and the identification of host-centered antiviral therapies.


Assuntos
COVID-19 , RNA Viral , COVID-19/genética , Humanos , Pandemias , RNA Viral/genética , SARS-CoV-2/genética , Replicação Viral/genética
13.
J Exp Med ; 218(4)2021 04 05.
Artigo em Inglês | MEDLINE | ID: mdl-33533916

RESUMO

Several studies have analyzed antiviral immune pathways in late-stage severe COVID-19. However, the initial steps of SARS-CoV-2 antiviral immunity are poorly understood. Here we have isolated primary SARS-CoV-2 viral strains and studied their interaction with human plasmacytoid predendritic cells (pDCs), a key player in antiviral immunity. We show that pDCs are not productively infected by SARS-CoV-2. However, they efficiently diversified into activated P1-, P2-, and P3-pDC effector subsets in response to viral stimulation. They expressed CD80, CD86, CCR7, and OX40 ligand at levels similar to influenza virus-induced activation. They rapidly produced high levels of interferon-α, interferon-λ1, IL-6, IP-10, and IL-8. All major aspects of SARS-CoV-2-induced pDC activation were inhibited by hydroxychloroquine. Mechanistically, SARS-CoV-2-induced pDC activation critically depended on IRAK4 and UNC93B1, as established using pDC from genetically deficient patients. Overall, our data indicate that human pDC are efficiently activated by SARS-CoV-2 particles and may thus contribute to type I IFN-dependent immunity against SARS-CoV-2 infection.


Assuntos
COVID-19/imunologia , COVID-19/metabolismo , Plasticidade Celular/imunologia , Células Dendríticas/imunologia , Células Dendríticas/metabolismo , Quinases Associadas a Receptores de Interleucina-1/metabolismo , Proteínas de Membrana Transportadoras/metabolismo , SARS-CoV-2/imunologia , Biomarcadores , COVID-19/virologia , Citocinas/metabolismo , Células Dendríticas/virologia , Interações Hospedeiro-Patógeno/imunologia , Humanos , Hidroxicloroquina/farmacologia , Hidroxicloroquina/uso terapêutico , Imunomodulação , Imunofenotipagem , Mediadores da Inflamação/metabolismo , Interferon Tipo I/metabolismo , Interferons/metabolismo , Interferon lambda , Tratamento Farmacológico da COVID-19
14.
bioRxiv ; 2021 Jan 08.
Artigo em Inglês | MEDLINE | ID: mdl-33442685

RESUMO

Several studies have analyzed antiviral immune pathways in late-stage severe COVID-19. However, the initial steps of SARS-CoV-2 antiviral immunity are poorly understood. Here, we have isolated primary SARS-CoV-2 viral strains, and studied their interaction with human plasmacytoid pre-dendritic cells (pDC), a key player in antiviral immunity. We show that pDC are not productively infected by SARS-CoV-2. However, they efficiently diversified into activated P1-, P2-, and P3-pDC effector subsets in response to viral stimulation. They expressed CD80, CD86, CCR7, and OX40 ligand at levels similar to influenza virus-induced activation. They rapidly produced high levels of interferon-α, interferon-λ1, IL-6, IP-10, and IL-8. All major aspects of SARS-CoV-2-induced pDC activation were inhibited by hydroxychloroquine. Mechanistically, SARS-CoV-2-induced pDC activation critically depended on IRAK4 and UNC93B1, as established using pDC from genetically deficient patients. Overall, our data indicate that human pDC are efficiently activated by SARS-CoV-2 particles and may thus contribute to type I IFN-dependent immunity against SARS-CoV-2 infection.

15.
C R Biol ; 343(4): 79-89, 2021 Apr 21.
Artigo em Inglês | MEDLINE | ID: mdl-33988325

RESUMO

Chikungunya is an infectious disease caused by the chikungunya virus (CHIKV), an alphavirus transmitted to humans by Aedes mosquitoes, and for which there is no licensed vaccine nor antiviral treatments. By using a loss-of-function genetic screen, we have recently identified the FHL1 protein as an essential host factor for CHIKV tropism and pathogenesis. FHL1 is highly expressed in muscles cells and fibroblasts, the main CHIKV-target cells. FHL1 interacts with the viral protein nsP3 and plays a critical role in CHIKV genome amplification. Experiments in vivo performed in FHL1-deficient mice have shown that these animals are resistant to infection and do not develop muscular lesions. Altogether these observations, published in the journal Nature [1], show that FHL1 is a key host factor for CHIKV pathogenesis and identify the interaction between FHL1 and nsP3 as a promising target for the development of new antiviral strategies.


Le chikungunya est une maladie infectieuse causée par le virus chikungunya (CHIKV), un alphavirus transmis à l'Homme par les moustiques Aedes et contre lequel il n'existe ni vaccin, ni traitements antiviraux. En utilisant une approche de crible génétique par perte de fonction, nous avons récemment identifié la protéine FHL1 comme un facteur cellulaire essentiel pour le tropisme et la pathogénèse du CHIKV. FHL1 est une molécule présente majoritairement dans les cellules musculaires et les fibroblastes, les cibles privilégiées de CHIKV. FHL1 interagit avec la protéine virale nsP3 et joue un rôle décisif dans le mécanisme d'amplification du génome de CHIKV. Des expériences in vivo chez des souris déficientes pour FHL1 ont montré que ces animaux sont résistants à l'infection et ne développent pas de lésions musculaires. L'ensemble de ces observations publiées dans la revue Nature [1] montrent que FHL1 est un facteur cellulaire clé pour la pathogénèse de CHIKV et identifient l'interaction entre FHL1 et nsp3 comme une cible prometteuse pour le développement de nouvelles stratégies antivirales.


Assuntos
Febre de Chikungunya , Vírus Chikungunya , Animais , Vírus Chikungunya/genética , Peptídeos e Proteínas de Sinalização Intracelular , Proteínas com Domínio LIM , Camundongos , Proteínas Musculares , Tropismo , Proteínas não Estruturais Virais , Replicação Viral
16.
Sci Immunol ; 6(62)2021 08 19.
Artigo em Inglês | MEDLINE | ID: mdl-34413140

RESUMO

Autosomal inborn errors of type I IFN immunity and autoantibodies against these cytokines underlie at least 10% of critical COVID-19 pneumonia cases. We report very rare, biochemically deleterious X-linked TLR7 variants in 16 unrelated male individuals aged 7 to 71 years (mean: 36.7 years) from a cohort of 1,202 male patients aged 0.5 to 99 years (mean: 52.9 years) with unexplained critical COVID-19 pneumonia. None of the 331 asymptomatically or mildly infected male individuals aged 1.3 to 102 years (mean: 38.7 years) tested carry such TLR7 variants (p = 3.5 × 10-5). The phenotypes of five hemizygous relatives of index cases infected with SARS-CoV-2 include asymptomatic or mild infection (n=2, 5 and 38 years), or moderate (n=1, 5 years), severe (n=1, 27 years), or critical (n=1, 29 years) pneumonia. Two boys (aged 7 and 12 years) from a cohort of 262 male patients with severe COVID-19 pneumonia (mean: 51.0 years) are hemizygous for a deleterious TLR7 variant. The cumulative allele frequency for deleterious TLR7 variants in the male general population is < 6.5x10-4 We also show that blood B cell lines and myeloid cell subsets from the patients do not respond to TLR7 stimulation, a phenotype rescued by wild-type TLR7 The patients' blood plasmacytoid dendritic cells (pDCs) produce low levels of type I IFNs in response to SARS-CoV-2. Overall, X-linked recessive TLR7 deficiency is a highly penetrant genetic etiology of critical COVID-19 pneumonia, in about 1.8% of male patients below the age of 60 years. Human TLR7 and pDCs are essential for protective type I IFN immunity against SARS-CoV-2 in the respiratory tract.


Assuntos
COVID-19/complicações , Doenças Genéticas Ligadas ao Cromossomo X/complicações , Doenças do Sistema Imunitário/complicações , Receptor 7 Toll-Like/deficiência , Adolescente , Adulto , Idoso , Idoso de 80 Anos ou mais , Alelos , Criança , Pré-Escolar , Humanos , Lactente , Masculino , Pessoa de Meia-Idade , Linhagem , Penetrância , Receptor 7 Toll-Like/genética , Adulto Jovem
17.
J Virol ; 83(11): 5477-84, 2009 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-19297469

RESUMO

Claudin-1, a component of tight junctions between liver hepatocytes, is a hepatitis C virus (HCV) late-stage entry cofactor. To investigate the structural and functional roles of various claudin-1 domains in HCV entry, we applied a mutagenesis strategy. Putative functional intracellular claudin-1 domains were not important. However, we identified seven novel residues in the first extracellular loop that are critical for entry of HCV isolates drawn from six different subtypes. Most of the critical residues belong to the highly conserved claudin motif W(30)-GLW(51)-C(54)-C(64). Alanine substitutions of these residues did not impair claudin-1 cell surface expression or lateral protein interactions within the plasma membrane, including claudin-1-claudin-1 and claudin-1-CD81 interactions. However, these mutants no longer localized to cell-cell contacts. Based on our observations, we propose that cell-cell contacts formed by claudin-1 may generate specialized membrane domains that are amenable to HCV entry.


Assuntos
Comunicação Celular , Hepacivirus/fisiologia , Proteínas de Membrana/metabolismo , Internalização do Vírus , Motivos de Aminoácidos , Linhagem Celular , Membrana Celular/metabolismo , Claudina-1 , Espaço Extracelular/metabolismo , Humanos , Proteínas de Membrana/química , Proteínas de Membrana/genética , Dados de Sequência Molecular , Mutação/genética
18.
J Virol ; 82(7): 3555-60, 2008 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-18234789

RESUMO

Hepatitis C virus (HCV) is a major cause of liver disease in humans. The CD81 tetraspanin is necessary but not sufficient for HCV penetration into hepatocytes, and it was recently reported that the tight junction protein claudin-1 is a critical HCV entry cofactor. Here, we confirm the role of claudin-1 in HCV entry. In addition, we show that claudin-6 and claudin-9 expressed in CD81(+) cells also enable the entry of HCV pseudoparticles derived from six of the major genotypes. Whereas claudin-1, -6, and -9 function equally well as entry cofactors in endothelial cells, claudin-1 is more efficient in hepatoma cells. This suggests that additional cellular factors modulate the ability of claudins to function as HCV entry cofactors. Our work has generated novel and essential means to investigate the mechanism of HCV penetration into hepatocytes and the role of the claudin protein family in HCV dissemination, replication, and pathogenesis.


Assuntos
Hepacivirus/fisiologia , Proteínas de Membrana/fisiologia , Receptores Virais/fisiologia , Internalização do Vírus , Linhagem Celular , Claudina-1 , Claudinas , Células Endoteliais/virologia , Inativação Gênica , Hepatócitos/virologia , Humanos , RNA Interferente Pequeno/genética , RNA Interferente Pequeno/metabolismo
19.
Cell Rep ; 23(6): 1779-1793, 2018 05 08.
Artigo em Inglês | MEDLINE | ID: mdl-29742433

RESUMO

Dengue virus (DENV) is a major human pathogen causing millions of infections yearly. Despite intensive investigations, a DENV receptor that directly participates in virus internalization has not yet been characterized. Here, we report that the phosphatidylserine receptor TIM-1 is an authentic DENV entry receptor that plays an active role in virus endocytosis. Genetic ablation of TIM-1 strongly impaired DENV infection. Total internal reflection fluorescence microscopy analyses of live infected cells show that TIM-1 is mostly confined in clathrin-coated pits and is co-internalized with DENV during viral entry. TIM-1 is ubiquitinated at two lysine residues of its cytoplasmic domain, and this modification is required for DENV endocytosis. Furthermore, STAM-1, a component of the ESCRT-0 complex involved in intracellular trafficking of ubiquitinated cargos, interacts with TIM-1 and is required for DENV infection. Overall, our results show that TIM-1 is the first bona fide receptor identified for DENV.


Assuntos
Vírus da Dengue/fisiologia , Dengue/virologia , Receptor Celular 1 do Vírus da Hepatite A/metabolismo , Ubiquitinação , Internalização do Vírus , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Sequência de Aminoácidos , Linhagem Celular Tumoral , Vírus da Dengue/ultraestrutura , Endocitose , Complexos Endossomais de Distribuição Requeridos para Transporte/metabolismo , Deleção de Genes , Receptor Celular 1 do Vírus da Hepatite A/química , Receptor Celular 1 do Vírus da Hepatite A/genética , Humanos , Fosfoproteínas/metabolismo , Ligação Proteica , Domínios Proteicos , Proteômica
20.
Cell Rep ; 21(13): 3900-3913, 2017 12 26.
Artigo em Inglês | MEDLINE | ID: mdl-29281836

RESUMO

Dengue virus (DENV) infections cause the most prevalent mosquito-borne viral disease worldwide, for which no therapies are available. DENV encodes seven non-structural (NS) proteins that co-assemble and recruit poorly characterized host factors to form the DENV replication complex essential for viral infection. Here, we provide a global proteomic analysis of the human host factors that interact with the DENV NS1 protein. Combined with a functional RNAi screen, this study reveals a comprehensive network of host cellular processes involved in DENV infection and identifies DENV host restriction and dependency factors. We highlight an important role of RACK1 and the chaperonin TRiC (CCT) and oligosaccharyltransferase (OST) complexes during DENV replication. We further show that the OST complex mediates NS1 and NS4B glycosylation, and pharmacological inhibition of its N-glycosylation function strongly impairs DENV infection. In conclusion, our study provides a global interactome of the DENV NS1 and identifies host factors targetable for antiviral therapies.


Assuntos
Vírus da Dengue/metabolismo , Interações Hospedeiro-Patógeno , Mapas de Interação de Proteínas , Proteínas não Estruturais Virais/metabolismo , Dengue/virologia , Glicosilação , Células HEK293 , Células HeLa , Humanos , Complexos Multiproteicos/metabolismo , Proteínas de Neoplasias/metabolismo , RNA Interferente Pequeno/metabolismo , Receptores de Quinase C Ativada/metabolismo , Replicação Viral
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA