RESUMO
PURPOSE: To apply free-running three-dimensional (3D) cine balanced steady state free precession (bSSFP) CMR framework in combination with AI segmentations to quantify time-resolved aortic displacement, diameter and diameter change. METHODS: In this prospective study, we implemented a free-running 3D cine bSSFP sequence with scan time of about 4minutes facilitated by pseudo-spiral Cartesian undersampling and compressed-sensing reconstruction. Automated segmentation of all cardiac timeframes was applied through the use of nnU-Net. Dynamic 3D motion maps were created for three repeated scans per volunteer, leading to the detailed quantification of motion, as well as the measurement and change in diameter of the ascending aorta. RESULTS: A total of 14 adult healthy volunteers (median age, 28 years (IQR: 26.0-31.3), 6 female) were included. Automated segmentation compared to manual segmentation of the aorta test set showed a Dice score of 0.93 ± 0.02. The median (interquartile range) over all volunteers for the largest maximum and mean ascending aorta (AAo) displacement in the first scan was 13.0 (4.4) mm and 5.6 (2.4) mm, respectively. Peak mean diameter in the AAo was 25.9 (2.2) mm and peak mean diameter change was 1.4 (0.5) mm. The maximum individual variability over the three repeated scans of maximum and mean AAo displacement was 3.9 (1.6) mm and 2.2 (0.8) mm, respectively. The maximum individual variability of mean diameter and diameter change were 1.2 (0.5) mm and 0.9 (0.4) mm. CONCLUSION: A free-running 3D cine bSSFP CMR scan with a scan time of four minutes combined with an automated nnU-net segmentation consistently captured the aorta's cardiac motion-related 4D displacement, diameter, and diameter change.
RESUMO
BACKGROUND: Resveratrol, a dietary supplement that intervenes in cellular metabolism, has been shown to reduce aortic growth rate in a mouse model of Marfan syndrome (MFS), a condition associated in humans with life-threatening aortic complications, often preceded by aortic dilatation. The primary objective of this study was to investigate the effects of resveratrol on aortic growth rate in patients with MFS . METHODS: In this investigator-initiated, single-arm open-label multicentre trial, we analysed resveratrol treatment in adults aged 18-50 years with MFS. The primary endpoint was the change in estimated annual aortic growth at five predefined levels in the thoracic aorta after 1 year of resveratrol treatment, evaluated using a linear mixed model. Aortic diameters were measured by cardiac MRI at three time points to analyse the annual aortic expansion rate before and after initiation of treatment. Additionally, annual aortic growth was compared with growth in a previously conducted losartan randomised clinical trial. RESULTS: 898 patients were screened of which 19% (168/898) patients met the inclusion criteria.36% (61/168) patients signed informed consent and 93% (57/61) aged 37±9 years, of which 28 males (49%) were included in the final analysis of the study. 46% (26/57) had undergone aortic root replacement prior to the study. Aortic root diameters remained stable after 1.2±0.3 years of resveratrol administration. A trend towards a decrease in estimated growth rate (mm/year) was observed in the aortic root (from 0.39±0.06 to -0.13±0.23, p=0.072), ascending aorta (from 0.40±0.05 to -0.01±0.18, p=0.072) and distal descending aorta (from 0.32±0.04 to 0.01±0.14, p=0.072). CONCLUSION: Resveratrol treatment for 1 year may stabilise the aortic growth rate in adult patients with MFS. However, a subsequent randomised clinical trial with a longer follow-up duration and a larger study cohort is needed to establish an actual long-term beneficial effect of this dietary supplement in patients with MFS. TRIAL REGISTRATION NUMBER: NL66127.018.18.