RESUMO
BACKGROUND: Ultrasound three-dimensional visualization, a cutting-edge technology in medical imaging, enhances diagnostic accuracy by providing a more comprehensive and readable portrayal of anatomical structures compared to traditional two-dimensional ultrasound. Crucial to this visualization is the segmentation of multiple targets. However, challenges like noise interference, inaccurate boundaries, and difficulties in segmenting small structures exist in the multi-target segmentation of ultrasound images. This study, using neck ultrasound images, concentrates on researching multi-target segmentation methods for the thyroid and surrounding tissues. METHOD: We improved the Unet++ to propose PA-Unet++ to enhance the multi-target segmentation accuracy of the thyroid and its surrounding tissues by addressing ultrasound noise interference. This involves integrating multi-scale feature information using a pyramid pooling module to facilitate segmentation of structures of various sizes. Additionally, an attention gate mechanism is applied to each decoding layer to progressively highlight target tissues and suppress the impact of background pixels. RESULTS: Video data obtained from 2D ultrasound thyroid serial scans served as the dataset for this paper.4600 images containing 23,000 annotated regions were divided into training and test sets at a ratio of 9:1, the results showed that: compared with the results of U-net++, the Dice of our model increased from 78.78% to 81.88% (+ 3.10%), the mIOU increased from 73.44% to 80.35% (+ 6.91%), and the PA index increased from 92.95% to 94.79% (+ 1.84%). CONCLUSIONS: Accurate segmentation is fundamental for various clinical applications, including disease diagnosis, treatment planning, and monitoring. This study will have a positive impact on the improvement of 3D visualization capabilities and clinical decision-making and research in the context of ultrasound image.
Assuntos
Imageamento Tridimensional , Glândula Tireoide , Glândula Tireoide/diagnóstico por imagem , Projetos de Pesquisa , Tecnologia , Processamento de Imagem Assistida por ComputadorRESUMO
Depolymerization of carbohydrate biomass using a long-chain alcohol (transglycosylation) to produce alkyl glycoside-based bio-surfactants has been gaining industrial interest. This study introduces microwave-assisted transglycosylation in transforming wheat bran, a substantial agricultural side stream, into these valuable compounds. Compared to traditional heating, microwave-assisted processing significantly enhances the product yield by 53 % while reducing the reaction time by 72 %, achieving a yield of 29 % within 5 h. This enhancement results from the microwave's capacity to activate intermolecular hydrogen and glycosidic bonds, thereby facilitating transglycosylation. Life-cycle assessment and techno-economic analysis demonstrate the benefits of microwave heating in reducing energy consumption by 42 %, CO2 emissions by 56 %, and equipment, operational and production costs by 44 %, 35 % and 30 %, respectively. The study suggests that microwave heating is a promising approach for efficiently producing bio-surfactants from agricultural wastes, with potential cost reductions and environmental benefits that could enhance industrial biomass conversion processes.
Assuntos
Biomassa , Fibras na Dieta , Glicosídeos , Micro-Ondas , Tensoativos , Tensoativos/química , Glicosilação , Química Verde/métodosRESUMO
INTRODUCTION: Compared with traditional fundus examination techniques, ultra-widefield fundus (UWF) images provide 200° panoramic images of the retina, which allows better detection of peripheral retinal lesions. The advent of UWF provides effective solutions only for detection but still lacks efficient diagnostic capabilities. This study proposed a retinal lesion detection model to automatically locate and identify six relatively typical and high-incidence peripheral retinal lesions from UWF images which will enable early screening and rapid diagnosis. METHODS: A total of 24,602 augmented ultra-widefield fundus images with labels corresponding to 6 peripheral retinal lesions and normal manifestation labelled by 5 ophthalmologists were included in this study. An object detection model named You Only Look Once X (YOLOX) was modified and trained to locate and classify the six peripheral retinal lesions including rhegmatogenous retinal detachment (RRD), retinal breaks (RB), white without pressure (WWOP), cystic retinal tuft (CRT), lattice degeneration (LD), and paving-stone degeneration (PSD). We applied coordinate attention block and generalized intersection over union (GIOU) loss to YOLOX and evaluated it for accuracy, sensitivity, specificity, precision, F1 score, and average precision (AP). This model was able to show the exact location and saliency map of the retinal lesions detected by the model thus contributing to efficient screening and diagnosis. RESULTS: The model reached an average accuracy of 96.64%, sensitivity of 87.97%, specificity of 98.04%, precision of 87.01%, F1 score of 87.39%, and mAP of 86.03% on test dataset 1 including 248 UWF images and reached an average accuracy of 95.04%, sensitivity of 83.90%, specificity of 96.70%, precision of 78.73%, F1 score of 81.96%, and mAP of 80.59% on external test dataset 2 including 586 UWF images, showing this system performs well in distinguishing the six peripheral retinal lesions. CONCLUSION: Focusing on peripheral retinal lesions, this work proposed a deep learning model, which automatically recognized multiple peripheral retinal lesions from UWF images and localized exact positions of lesions. Therefore, it has certain potential for early screening and intelligent diagnosis of peripheral retinal lesions.