Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Assunto da revista
País de afiliação
Intervalo de ano de publicação
1.
J Cell Mol Med ; 28(13): e18527, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38984969

RESUMO

Infected bone defects (IBDs) are the common condition in the clinical practice of orthopaedics. Although surgery and anti-infective medicine are the firstly chosen treatments, in many cases, patients experience a prolonged bone union process after anti-infective treatment. Epimedium-Curculigo herb pair (ECP) has been proved to be effective for bone repair. However, the mechanisms of ECP in IBDs are insufficiency. In this study, Effect of ECP in IBDs was verified by micro-CT and histological examination. Qualitative and quantitative analysis of the main components in ECP containing medicated serum (ECP-CS) were performed. The network pharmacological approaches were then applied to predict potential pathways for ECP associated with bone repair. In addition, the mechanism of ECP regulating LncRNA MALAT1/miRNA-34a-5p/SMAD2 signalling axis was evaluated by molecular biology experiments. In vivo experiments indicated that ECP could significantly promote bone repair. The results of the chemical components analysis and the pathway identification revealed that TGF-ß signalling pathway was related to ECP. The results of in vitro experiments indicated that ECP-CS could reverse the damage caused by LPS through inhibiting the expressions of LncRNA MALAT1 and SMAD2, and improving the expressions of miR-34a-5p, ALP, RUNX2 and Collagen type І in osteoblasts significantly. This research showed that ECP could regulate the TGF-ß/SMADs signalling pathway to promote bone repair. Meanwhile, ECP could alleviate LPS-induced bone loss by modulating the signalling axis of LncRNA MALAT1/miRNA-34a-5p/ SMAD2 in IBDs.


Assuntos
Epimedium , MicroRNAs , Osteoblastos , RNA Longo não Codificante , Transdução de Sinais , Proteína Smad2 , MicroRNAs/genética , MicroRNAs/metabolismo , Osteoblastos/metabolismo , Osteoblastos/efeitos dos fármacos , RNA Longo não Codificante/genética , RNA Longo não Codificante/metabolismo , Animais , Proteína Smad2/metabolismo , Proteína Smad2/genética , Camundongos , Epimedium/química , Transdução de Sinais/efeitos dos fármacos , Masculino , Regeneração Óssea/efeitos dos fármacos , Humanos , Regulação da Expressão Gênica/efeitos dos fármacos , Osteogênese/efeitos dos fármacos , Osteogênese/genética
2.
Cell Biol Int ; 46(12): 2220-2231, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36168858

RESUMO

Diabetic osteoporosis (DOP) is a disorder of bone metabolism induced by multiple mechanisms. Previous studies have revealed that microRNAs (miRNAs) play crucial roles in bone metabolism. MiRNA-144-5p has been proven to participate in the regulation of osteoblast activities; however, its specific mechanism in DOP has not been elucidated. This study investigated whether high glucose (HG) inhibited osteoblasts by regulating miRNA-144-5p. Our results showed that HG inhibited bone formation not only in vivo but also in vitro. We observed that HG severely hindered the migration, proliferation and mineralization of osteoblasts, while miRNA-144-5p was upregulated by way of the cell counting kit-8 assay, wound healing assay, alkaline phosphatase (ALP) activity assay and alizarin red staining. Double luciferase reporter experiments showed that miRNA-144-5p directly targeted insulin receptor substrate 1 (IRS1). The IRS1/AKT signaling pathway is closely related to osteoblasts' migration, proliferation, and mineralization. Silencing miRNA-144-5p promoted the mRNA, and protein expression of IRS1, thereby letting the expression of total AKT down, and then preventing phosphorylation of AKT into the nucleus to regulate migration, proliferation, and mineralization genes of osteoblasts. In conclusion, this study indicated that HG regulated the migration, proliferation, and mineralization of osteoblasts via the miRNA-144-5p/IRS1/AKT axis, which suggested a possible mechanism for DOP pathology.


Assuntos
Diabetes Mellitus , MicroRNAs , Osteoporose , Humanos , Proteínas Substratos do Receptor de Insulina/genética , Proteínas Substratos do Receptor de Insulina/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Diferenciação Celular/genética , Osteoblastos/metabolismo , Osteoporose/genética , Osteoporose/metabolismo , MicroRNAs/genética , MicroRNAs/metabolismo , Proliferação de Células/genética , Diabetes Mellitus/metabolismo
3.
Bioengineered ; 13(6): 14339-14356, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-36694425

RESUMO

Bacterium-induced inflammatory responses cause bone nonunion. Although antibiotics suppress infection, bone loss after antibacterial treatment remains a critical challenge. Erxian herbal pair (EHP) has been proven effective in promoting bone formation. Our study aimed to investigate the effect of EHP on bone repair after anti-infection treatment, explore its effect on a lipopolysaccharide (LPS)-induced osteoblast. We evaluated effects of EHP on bone repair with Micro-CT, and morphology detecting. Chemical constituents of EHP and EHP-containing serum (EHP-CS) were identified by UHPLC-Q/TOF-MS. In addition, osteoblast induced by LPS was established and administrated with EHP-CS. Cell proliferationwas assessed by MTT. Target prediction identified SMAD2 as a potential target of miRNA-34a-5p. MiRNA mimic, inhibitor and siRNA were transiently transfected into osteoblasts. The mRNA levels and protein expressions of miRNA-34a-5p, BMP2, Runx2, SMAD2 were assessed. The results showed that the main biocactivity ingredients in EHP-CS were Baohuoside Ι and Orcinol Glucoside. EHP could promote bone remolding after anti-infection therapy and restore the activity of LPS-induced osteoblasts. Moreover, miRNA-34a-5p was dramatically downregulated and SMAD2 was upregulated after LPS stimulation, while EHP resisted the inhibition of LPS by promoting miRNA-34a-5p, ALP, and BMP2 expressions. Whereas downregulation of miRNA-34a-5p reversed these effects. Silencing endogenous SMAD2 expression markedly promoted BMP2 and ALP activity and enhanced osteogenesis. Taken together, EHP restored LPS-induced bone loss by regulating miRNA-34a-5p levels and repressing its target gene SMAD2. EHP might be a potential adjuvant herbal remedy for the treatment of bone nonunion, and miRNA-34a-5p is a novel target for controlling bone and metabolic diseases.


Assuntos
MicroRNAs , Osteogênese , Osteogênese/genética , Lipopolissacarídeos/metabolismo , MicroRNAs/metabolismo , RNA Interferente Pequeno/metabolismo , Osteoblastos/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA