RESUMO
Cannabis sativa L. glandular trichomes (GTs) synthesise large amounts of secondary metabolites, predominantly cannabinoids and terpenoids. The associated demand for carbon and energy makes GTs strong sink tissues with indications that their secondary metabolism is coupled to the availability of photoassimilates. Many metabolites show diurnal patterns of flux, but it is unknown whether cannabinoids and terpenoids are regulated by time of day. We quantified cannabinoids, terpenoids and the GT proteome over a 12-hour light period in flowers of Hindu Kush, a high-tetrahydrocannabinol (THC) cultivar. Major cannabinoids changed significantly over the course of day, resulting in an increase in total measured cannabinoids. Major terpenoids also changed, with sesquiterpenes generally decreasing with day progression. While monoterpenes generally did not decrease, the second most abundant, α-pinene, increased. The GT proteome changed the most within the first six hours of the day and analysis of differentially abundant proteins indicated upregulation of primary metabolism. Surprisingly, key cannabinoid biosynthetic enzymes decreased with daytime progression despite increases in cannabinoid content, which indicate that daytime increases of photoassimilates are the main driver of cannabinoid regulation. This first reporting of variability of cannabinoid and terpenoid biosynthesis over the course of the day has implications for Cannabis research and production.
RESUMO
The standard practice to initiate flowering in medicinal cannabis involves reducing the photoperiod from a long-day period to an equal duration cycle of 12 h light (12L)/12 h dark (12D). This method reflects the short-day flowering dependence of many cannabis varieties but may not be optimal for all. We sought to identify the effect of nine different flowering photoperiod treatments on the biomass yield and cannabinoid concentration of three medicinal cannabis varieties. The first, "Cannatonic", was a high cannabidiol (CBD)-accumulating line, whereas the other two, "Northern Lights" and "Hindu Kush", were high Δ9-tetrahydrocannabinol (THC) accumulators. The nine treatments tested, following 18 days under 18 h light/6 h dark following cloning and propagation included a standard 12L:12D period, a shortened period of 10L:14D, and a lengthened period of 14L:10D. The other six treatments started in one of the aforementioned and then 28 days later (mid-way through flowering) were switched to one of the other treatments, thus causing either an increase of 2 or 4 h, or a decrease of 2 or 4 h. Measured parameters included the timing of reproductive development; the dry weight flower yield; and the % dry weight of the main target cannabinoids, CBD and THC, from which the total g cannabinoid per plant was calculated. Flower biomass yields were highest for all lines when treatments started with 14L:10D; however, in the two THC lines, a static 14L:10D photoperiod caused a significant decline in THC concentration. Conversely, in Cannatonic, all treatments starting with 14L:10D led to a significant increase in the CBD concentration, which led to a 50-100% increase in total CBD yield. The results show that the assumption that a 12L:12D photoperiod is optimal for all lines is incorrect as, in some lines, yields can be greatly increased by a lengthened light period during flowering.