Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 44
Filtrar
1.
J Am Chem Soc ; 145(50): 27850-27856, 2023 Dec 20.
Artigo em Inglês | MEDLINE | ID: mdl-38069813

RESUMO

Hybrid halide perovskites AMIIX3 (A = ammonium cation, MII = divalent cation, X = Cl, Br, I) have been extensively studied but have only previously been reported for the divalent carbon group elements Ge, Sn, and Pb. While they have displayed an impressive range of optoelectronic properties, the instability of GeII and SnII and the toxicity of Pb have stimulated significant interest in finding alternatives to these carbon group-based perovskites. Here, we describe the low-temperature solid-state synthesis of five new hybrid iodide perovskites centered around divalent alkaline earth and lanthanide elements, with the general formula AMIII3 (A = methylammonium, MA; MII = Sr, Sm, Eu, and A = formamidinium, FA; MII = Sr, Eu). Structural, calorimetric, optical, photoluminescence, and magnetic properties of these materials are reported.

2.
Mol Ecol ; 30(8): 1864-1879, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33031624

RESUMO

Understanding the genetic causes of evolutionary diversification is challenging because differences across species are complex, often involving many genes. However, cases where single or few genetic loci affect a trait that varies dramatically across a radiation of species provide tractable opportunities to understand the genetics of diversification. Here, we begin to explore how diversification of bioluminescent signals across species of cypridinid ostracods ("sea fireflies") was influenced by evolution of a single gene, cypridinid-luciferase. In addition to emission spectra ("colour") of bioluminescence from 21 cypridinid species, we report 13 new c-luciferase genes from de novo transcriptomes, including in vitro assays to confirm function of four of those genes. Our comparative analyses suggest some amino acid sites in c-luciferase evolved under episodic diversifying selection and may be associated with changes in both enzyme kinetics and colour, two enzymatic functions that directly impact the phenotype of bioluminescent signals. The analyses also suggest multiple other amino acid positions in c-luciferase evolved neutrally or under purifying selection, and may have impacted the variation of colour of bioluminescent signals across genera. Previous mutagenesis studies at candidate sites show epistatic interactions, which could constrain the evolution of c-luciferase function. This work provides important steps toward understanding the genetic basis of diversification of behavioural signals across multiple species, suggesting different evolutionary processes act at different times during a radiation of species. These results set the stage for additional mutagenesis studies that could explicitly link selection, drift, and constraint to the evolution of phenotypic diversification.


Assuntos
Crustáceos , Vaga-Lumes , Animais , Vaga-Lumes/genética , Luciferases/genética , Fenótipo
3.
J Chem Phys ; 153(24): 244114, 2020 Dec 28.
Artigo em Inglês | MEDLINE | ID: mdl-33380074

RESUMO

Simulation of electronic dynamics in realistically large molecular systems is a demanding task that has not yet achieved the same level of quantitative prediction already realized for its static counterpart. This is particularly true for processes occurring beyond the Born-Oppenheimer regime. Non-adiabatic molecular dynamics (NAMD) simulations suffer from two convoluted sources of error: numerical algorithms for dynamics and electronic structure calculations. While the former has gained increasing attention, particularly addressing the validity of ad hoc methodologies, the effect of the latter remains relatively unexplored. Indeed, the required accuracy for electronic structure calculations to reach quantitative agreement with experiment in dynamics may be even more strict than that required for static simulations. Here, we address this issue by modeling the electronic energy transfer in a donor-acceptor-donor (D-A-D) molecular light harvesting system using fewest switches surface hopping NAMD simulations. In the studied system, time-resolved experimental measurements deliver complete information on spectra and energy transfer rates. Subsequent modeling shows that the calculated electronic transition energies are "sufficiently good" to reproduce experimental spectra but produce over an order of magnitude error in simulated dynamical rates. We further perform simulations using artificially shifted energy gaps to investigate the complex relationship between transition energies and modeled dynamics to understand factors affecting non-radiative relaxation and energy transfer rates.

4.
Angew Chem Int Ed Engl ; 59(46): 20333-20337, 2020 11 09.
Artigo em Inglês | MEDLINE | ID: mdl-32596843

RESUMO

The synthesis of a new conjugated oligoelectrolyte (COE), namely DSAzB, is described, which contains a conjugated core bearing a diazene moiety in the center of its electronically delocalized structure. Similar to structurally related phenylenevinylene-based COEs, DSAzB readily intercalates into model and natural lipid bilayer membranes. Photoinduced isomerization transforms the linear trans COE into a bent or C-shape form. It is thereby possible to introduce DSAzB into the bilayer of a cell and disrupt its integrity by irradiation with light. This leads to controlled permeabilization of membranes, as demonstrated by the release of calcein from DMPG/DMPC vesicles and by propidium iodide influx experiments on S. epidermidis. Both experiments support that the permeabilization is selective for the light stimulus, highly efficient, and repeatable. Target-selective and photoinduced actions demonstrated by DSAzB may have broad applications in biocatalysis and related biotechnologies.


Assuntos
Membrana Celular/efeitos da radiação , Eletrólitos/química , Luz , Compostos Azo/química , Espectroscopia de Ressonância de Spin Eletrônica , Isomerismo , Bicamadas Lipídicas/química , Estrutura Molecular , Espectrofotometria Ultravioleta
5.
Inorg Chem ; 58(16): 11066-11075, 2019 Aug 19.
Artigo em Inglês | MEDLINE | ID: mdl-31369245

RESUMO

Multiphoton excitation allows one to access high energy excited states and perform valuable tasks in biological systems using tissue penetrating near-infrared (NIR) light. Here, we describe new photoactive manganese tricarbonyl complexes incorporating the ligand 4'-p-N,N-bis(2-hydroxyethyl)amino-benzyl-2,2':6',2″-terpyridine (TPYOH), which can serve as an antenna for two photon NIR excitation. Solutions of Mn(CO)3(TPYOH)X (X = Br- or CF3SO3-) complexes are very photoactive toward CO release under visible light excitation (405 nm, 451 nm). The same responses were also triggered by multiphoton excitation at 750 and 800 nm. In this context, we discuss the potential applications of these complexes as visible/NIR light photoactivated carbon monoxide releasing moieties (photoCORMs). We also report the isolation and crystal structures of the TPYOH complexes Mn(TPYOH)Cl2 and [Mn(TPYOH)2](CF3SO3)2, to illustrate a possible photolysis product(s).

6.
Angew Chem Int Ed Engl ; 56(18): 5031-5034, 2017 04 24.
Artigo em Inglês | MEDLINE | ID: mdl-28370842

RESUMO

A membrane-intercalating conjugated oligoelectrolyte (COE), PTTP, was designed and synthesized with the goal of providing red-shifted absorption spectra relative to previously synthesized COE analogs. Specifically, electron-rich and electron-poor subunits were introduced in the conjugated backbone to modulate the band gap. PTTP exhibits maxima of absorption at 507 nm and of emission at 725 nm. PTTP can also efficiently function to generate singlet oxygen in situ (ΦΔ ≈20 %) and has appropriate topology and dimensions to interact with lipid membranes. The resulting rapid membrane insertion and sensitizing ability provide PTTP with a highly efficient antibacterial capability under a low light dose (0.6 J cm-2 ) toward Gram-negative bacteria E. coli, making it a remarkably efficient optically mediated antimicrobial agent.


Assuntos
Anti-Infecciosos/química , Anti-Infecciosos/farmacologia , Escherichia coli/efeitos dos fármacos , Bicamadas Lipídicas/metabolismo , Fármacos Fotossensibilizantes/química , Fármacos Fotossensibilizantes/farmacologia , Eletrólitos/química , Eletrólitos/farmacologia , Infecções por Escherichia coli/tratamento farmacológico , Humanos , Fotoquimioterapia , Oxigênio Singlete/metabolismo
7.
Nano Lett ; 15(12): 8188-93, 2015 Dec 09.
Artigo em Inglês | MEDLINE | ID: mdl-26575372

RESUMO

We demonstrate tuning of infrared Mie resonances by varying the carrier concentration in doped semiconductor antennas. We fabricate spherical silicon and germanium particles of varying sizes and doping concentrations. Single-particle infrared spectra reveal electric and magnetic dipole, quadrupole, and hexapole resonances. We subsequently demonstrate doping-dependent frequency shifts that follow simple Drude models, culminating in the emergence of plasmonic resonances at high doping levels and long wavelengths. These findings demonstrate the potential for actively tuning infrared Mie resonances by optically or electrically modulating charge carrier densities, thus providing an excellent platform for tunable metamaterials.

8.
Faraday Discuss ; 176: 333-47, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25592992

RESUMO

In developing phosphors for application in solid state lighting, it is advantageous to target structures from databases with highly condensed polyhedral networks that produce rigid host compounds. Rigidity limits channels for non-radiative decay that will decrease the luminescence quantum yield. BaM(2)Si(3)O(10) (M = Sc, Lu) follows this design criterion and is studied here as an efficient Eu(2+)-based phosphor. M = Sc(3+) and Lu(3+) compounds with Eu(2+) substitution were prepared and characterized using synchrotron X-ray powder diffraction and photoluminescence spectroscopy. Substitution with Eu(2+) according to Ba(1-x)Eu(x)Sc(2)Si(3)O(10) and Ba(1-x)Eu(x)Lu(2)Si(3)O(10) results in UV-to-blue and UV-to-blue-green phosphors, respectively. Interestingly, substitution with Eu(2+) in the Lu(3+) containing material produces two emission peaks at low temperature and with 365 nm excitation, as allowed by the two substitution sites. The photoluminescence of the Sc(3+) compound is robust at high temperature, decreasing by only 25% of its room temperature intensity at 503 K, while the Lu-analogue suffers a large drop (75%) from its room temperature intensity. The decrease in emission intensity is explained as stemming from charge transfer quenching due to the short distances separating the luminescent centers on the Lu(3+) substitution site. The correlation between structure and optical response in these two compounds indicates that even though the structures are three-dimensionally connected, high symmetry is required to prevent structural distortions that could impact photoluminescence.

9.
J Phys Chem A ; 118(51): 12184-91, 2014 Dec 26.
Artigo em Inglês | MEDLINE | ID: mdl-25405612

RESUMO

We describe the use of cadmium telluride quantum dots (CdTe QDs) as antennas for the photosensitization of nitric oxide release from a ruthenium nitrosyl complex with visible light excitation. The CdTe QDs were capped with mercaptopropionic acid to make them water-soluble, and the ruthenium nitrosyl complex was cis-[Ru(NO)(4-ampy)(bpy)2](3+) (Ru-NO; bpy is 2,2'-bipyridine, and 4-ampy is 4-aminopyridine). Solutions of these two components demonstrated concentration-dependent quenching of the QD photoluminescence (PL) as well as photoinduced release of NO from Ru-NO when irradiated by 530 nm light. A NO release enhancement of ∼8 times resulting from this association was observed under longer wavelength excitation in visible light range. The dynamics of the quenching determined by both PL and transient absorption measurements were probed by ultrafast flash photolysis. A charge transfer mechanism is proposed to explain the quenching of the QD excited states as well as the photosensitized release of NO from Ru-NO.


Assuntos
Óxidos de Nitrogênio/química , Processos Fotoquímicos , Pontos Quânticos/química , Rutênio/química , Compostos de Cádmio/química , Telúrio/química
10.
Angew Chem Int Ed Engl ; 53(1): 244-9, 2014 Jan 03.
Artigo em Inglês | MEDLINE | ID: mdl-24249650

RESUMO

A mechanistic study of the DNA interfacial layer that enhances the photoresponse in n-type field-effect transistors (FET) and lateral photoconductors using a solution-processed fullerene derivative embedded with disperse-red dye, namely PCBDR, is reported. Incorporation of the thin DNA layer simultaneously leads to increasing the electron injection from non-Ohmic contacts into the PCBDR active layer in dark and to increasing the photocurrent under irradiation. Such features lead to the observation of the enhancement of the photoresponsivity in PCBDR FETs up to 10(3) . Kelvin probe microscopy displays that in the presence of the DNA layer, the surface potential of PCBDR has a greater change in response to irradiation, which is rationalized by a larger number of photoinduced surface carriers. Transient absorption spectroscopy confirms that the increase in photoinduced carriers in PCBDR under irradiation is primarily ascribed to the increase in exciton dissociation rates through the PCBDR/DNA interface and this process can be assisted by the interfacial dipole interaction.


Assuntos
DNA/química , Condutividade Elétrica , Transistores Eletrônicos
11.
J Am Chem Soc ; 135(48): 18145-52, 2013 Dec 04.
Artigo em Inglês | MEDLINE | ID: mdl-24245494

RESUMO

Novel materials for the phototherapeutic release of the bioregulator nitric oxide (nitrogen monoxide) are described. Also reported is a method for scanning these materials with a focused NIR beam to induce photouncaging while minimizing damage from local heating. The new materials consist of poly(dimethylsiloxane) composites with near-infrared-to-visible upconverting nanoparticles (UCNPs) that are cast into a biocompatible polymer disk (PD). These PDs are then impregnated with the photochemical nitric oxide precursor Roussin's black salt (RBS) to give UCNP_RBS_PD devices that generate NO when irradiated with 980 nm light. When the UCNP_RBS_PD composites were irradiated with NIR light through filters composed of porcine tissue, physiologically relevant NO concentrations were released, thus demonstrating the potential of such devices for minimally invasive phototherapeutic applications.


Assuntos
Dimetilpolisiloxanos/química , Sistemas de Liberação de Medicamentos/instrumentação , Sequestradores de Radicais Livres/administração & dosagem , Nanopartículas/química , Óxido Nítrico/administração & dosagem , Animais , Desenho de Equipamento , Filtração/instrumentação , Compostos de Ferro/química , Luz , Luminescência , Modelos Moleculares , Compostos Nitrosos/química , Fotólise , Suínos
12.
Inorg Chem ; 52(14): 8010-6, 2013 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-23822144

RESUMO

A novel cerium-substituted, barium yttrium silicate has been identified as an efficient blue-green phosphor for application in solid state lighting. Ba9Y2Si6O24:Ce(3+) was prepared and structurally characterized using synchrotron X-ray powder diffraction. The photoluminescent characterization identified a major peak at 394 nm in the excitation spectrum, making this material viable for near-UV LED excitation. An efficient emission, with a quantum yield of ≈60%, covers a broad portion (430-675 nm) of the visible spectrum, leading to the blue-green color. Concentration quenching occurs when the Ce(3+) content exceeds ≈3 mol %, whereas high temperature photoluminescent measurements show a 25% drop from the room temperature efficiency at 500 K. The emission of this compound can be red-shifted via the solid solution Ba9(Y(1-y)Sc(y))(1.94)Ce(0.06)Si6O24 (y = 0.1, 0.2), allowing for tunable color properties when device integration is considered.

13.
Inorg Chem ; 52(23): 13730-41, 2013 Dec 02.
Artigo em Inglês | MEDLINE | ID: mdl-24236540

RESUMO

Structural intricacies of the orange-red nitride phosphor system La(3-x)Ce(x)Si6N11 (0 < x ≤ 3) have been elucidated using a combination of state-of-the art tools, in order to understand the origins of the exceptional optical properties of this important solid-state lighting material. In addition, the optical properties of the end-member (x = 3) compound, Ce3Si6N11, are described for the first time. A combination of synchrotron powder X-ray diffraction and neutron scattering is employed to establish site preferences and the rigid nature of the structure, which is characterized by a high Debye temperature. The high Debye temperature is also corroborated from ab initio electronic structure calculations. Solid-state (29)Si nuclear magnetic resonance, including paramagnetic shifts of (29)Si spectra, are employed in conjunction with low-temperature electron spin resonance studies to probes of the local environments of Ce ions. Detailed wavelength-, time-, and temperature-dependent luminescence properties of the solid solution are presented. Temperature-dependent quantum yield measurements demonstrate the remarkable thermal robustness of luminescence of La2.82Ce0.18Si6N11, which shows little sign of thermal quenching, even at temperatures as high as 500 K. This robustness is attributed to the highly rigid lattice. Luminescence decay measurements indicate very short decay times (close to 40 ns). The fast decay is suggested to prevent strong self-quenching of luminescence, allowing even the end-member compound Ce3Si6N11 to display bright luminescence.

14.
Chem Commun (Camb) ; 59(97): 14455-14458, 2023 Dec 05.
Artigo em Inglês | MEDLINE | ID: mdl-37982517

RESUMO

Time-resolved radioluminescence (TRRL) properties of the Cu(I) cluster Cu4I62- upon pulsed X-ray, ß-ray or α-particle excitation are described. The longer (>2 µs) TRRL component displays exponential decay comparable to pulsed UV excitation; however, temporal behaviour at shorter times indicates that high local excited state density provides an alternative decay channel.

15.
J Am Chem Soc ; 134(32): 13266-75, 2012 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-22808899

RESUMO

Reported are quantitative studies of the energy transfer from water-soluble CdSe/ZnS and CdSeS/ZnS core/shell quantum dots (QDs) to the Cr(III) complexes trans-Cr(N(4))(X)(2)(+) (N(4) is a tetraazamacrocycle ligand, X(-) is CN(-), Cl(-), or ONO(-)) in aqueous solution. Variation of N(4), of X(-), and of the QD size and composition allows one to probe the relationship between the emission/absorption overlap integral parameter and the efficiency of the quenching of the QD photoluminescence (PL) by the chromium(III) complexes. Steady-state studies of the QD PL in the presence of different concentrations of trans-Cr(N(4))(X)(2)(+) indicate a clear correlation between quenching efficiency and the overlap integral largely consistent with the predicted behavior of a Förster resonance energy transfer (FRET)-type mechanism. PL lifetimes show analogous correlations, and these results demonstrate that spectral overlap is an important consideration when designing supramolecular systems that incorporate QDs as photosensitizers. In the latter context, we extend earlier studies demonstrating that the water-soluble CdSe/ZnS and CdSeS/ZnS QDs photosensitize nitric oxide release from the trans-Cr(cyclam)(ONO)(2)(+) cation (cyclam = 1,4,8,11-tetraazacyclotetradecane) and report the efficiency (quantum yield) for this process. An improved synthesis of ternary CdSeS core/shell QDs is also described.


Assuntos
Cromo/química , Compostos Organometálicos/química , Fármacos Fotossensibilizantes/química , Pontos Quânticos , Transferência de Energia , Transferência Ressonante de Energia de Fluorescência
16.
Adv Mater ; 34(5): e2103976, 2022 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-34793602

RESUMO

As in many fields, the most exciting endeavors in photon upconversion research focus on increasing the efficiency (upconversion quantum yield) and performance (anti-Stokes shift) while diminishing the cost of production. In this vein, studies employing metal-free thermally activated delayed fluorescence (TADF) sensitizers have garnered increased interest. Here, for the first time, the strategy of ternary photon upconversion is utilized with the TADF sensitizer 2,4,5,6-tetrakis(carbazol-9-yl)isophthalonitrile (4CzIPN), resulting in a doubling of the upconversion quantum yield in comparison to the binary system employing p-terphenyl as the emitter. In this ternary blend, the sensitizer 4CzIPN is paired with an intermediate acceptor, 1-methylnaphthalene, in addition to the emitter molecule, p-terphenyl, yielding a normalized upconversion quantum yield of 7.6% while maintaining the 0.83 eV anti-Stokes shift. These results illustrate the potential benefits of utilizing this strategy of energy-funneling, previously used only with heavy-metal based sensitizers, to increase the performance of these photon upconversion systems.

17.
Adv Mater ; 34(20): e2201989, 2022 May.
Artigo em Inglês | MEDLINE | ID: mdl-35306702

RESUMO

The design and synthesis of the near-infrared (NIR)-II emissive conjugated oligoelectrolyte COE-BBT are reported. COE-BBT has a solubility in aqueous media greater than 50 mg mL-1 , low toxicity, and a propensity to intercalate lipid bilayers, wherein it exhibits a higher emission quantum yield relative to aqueous media. Addition of COE-BBT to cells provides two emission channels, at ≈500 and ≈1020 nm, depending on the excitation wavelength, which facilitates in vitro confocal microscopy and in vivo animal imaging. The NIR-II emission of COE-BBT is used to track intracranial and subcutaneous tumor progression in mice. Of relevance is that the total NIR-II intensity increases over time. This phenomenon is attributed to a progressive attenuation of a COE-BBT self-quenching effect within the cells due to the expected dye dilution per cell as the tumor proliferates.


Assuntos
Neoplasias , Imagem Óptica , Animais , Camundongos , Microscopia Confocal , Neoplasias/diagnóstico por imagem , Imagem Óptica/métodos , Solubilidade , Água
18.
J Am Chem Soc ; 133(21): 8380-7, 2011 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-21548560

RESUMO

Conjugated oligoelectrolytes are of emerging technological interest due to their recent function in the fabrication of optoelectronic devices, application in biosensors, and as species that facilitate transmembrane charge migration. Solubility in aqueous, or highly polar, solvents is important for many of these applications; however, there are few studies on how the self-assembly of conjugated oligoelectrolytes into multichromophore species influences linear and nonlinear optical properties. Here, we examine 1,4-bis(4'-(N,N-bis(6''-(N,N,N-trimethylammonium)hexyl)amino)-styryl)benzene tetraiodide (DSBNI) in water, a conjugated oligoelectrolyte based on the distyrylbenzene framework. We find that DSBNI aggregation leads to increased fluorescence lifetimes, coupled with hypsochromic shifts, and larger two-photon absorption cross sections. Liquid atomic force microscopy (AFM) and cryogenic transmission electron microscopy (cryo-TEM) were used to image DSBNI aggregates and to confirm that the planar molecules stack to form nanocylinders above a critical aggregation concentration. Finally, small-angle neutron scattering (SANS) was used to quantify the aggregate dimensions in situ. Comparison of the results highlights that the hydrophilic mica surface used to image via liquid AFM and the high concentrations required for cryo-TEM facilitate the propagation of the cylinders into long fibers. SANS experiments are consistent with equivalent molecular packing geometry but lower aspect ratios. It is therefore possible to understand the evolution of optical properties as a function of concentration and aggregation and the general geometric features of the resulting supramolecular structures.

19.
Langmuir ; 27(1): 347-51, 2011 Jan 04.
Artigo em Inglês | MEDLINE | ID: mdl-21141950

RESUMO

We report on a study of the overall surface-enhanced Raman scattering (SERS) response from several thiol-terminated molecules located at interstitial sites between Ag nanoparticles. Multiplexing of the SERS signal was demonstrated along with its dependence of the molecular length, regiochemistry, and the number of thiol groups. The data collected establish pathways for the rational design of the SERS reporters and multiplexed sensory applications.


Assuntos
Nanopartículas/química , Análise Espectral Raman , Compostos de Sulfidrila/química , Naftalenos/química , Estereoisomerismo
20.
Phys Chem Chem Phys ; 13(17): 7622-9, 2011 May 07.
Artigo em Inglês | MEDLINE | ID: mdl-21109862

RESUMO

Three novel inorganic-organic framework compounds containing the organic chromophore ligand 9-fluorenone-2,7-dicarboxylic acid (abbreviated H(2)FDC) and barium (BaFDC), cadmium (CdFDC) and manganese (MnFDC), respectively, have been synthesized and evaluated for their use as phosphor materials for solid state lighting and other applications. The results are compared with two earlier reported structures containing the same ligand with calcium (CaFDC) and strontium (SrFDC). The barium- and cadmium-containing compounds both show blue excited, yellow photoluminescence, while the manganese structure does not. The trends in luminescent efficiency for the Ba, Cd, Ca, and Sr derivatives are discussed in relation to crystallographic, optical, and low-temperature specific heat considerations.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA