Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Assunto da revista
País de afiliação
Intervalo de ano de publicação
1.
Plant Dis ; 99(2): 286, 2015 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-30699587

RESUMO

Carrot (Daucus carota L. subsp. sativus (Hoffm.) Thell., Apiaceae), a widely consumed antioxidant-rich plant, is among the major vegetable crops grown in Serbia, with average annual production of 65,400 tons on approximately 7,000 ha (4). In May 2013, a severe root rot was observed on approximately 20% of cold-stored carrot roots originating from Gospodinci, South Backa District, Serbia. Symptoms included dry rot of the collar and crown as well as large, brown to dark brown, circular, sunken lesions on the stored roots. Frequently, abundant whitish mycelium was observed covering the surface of the colonized roots. To determine the causal agent, small pieces of infected tissue were surface-disinfested with 2% NaOCl without rinsing, air-dried, and placed on potato dextrose agar. Five single-spore isolates obtained from collar and crown tissue sections, as well as nine isolates from root sections, all formed abundant, cottony white to pale salmon fungal colonies with reddish orange pigment on the reverse surface of the agar medium when grown at 25°C under 12 h of fluorescent light per day. All recovered isolates formed numerous, three- to six-septate, hyaline, needle-like, straight to slightly curved, fusoid macroconidia (30 to 80 × 4 to 5.5 µm, average 58.3 × 4.9 µm, n = 100 spores) each with a tapering apical cell. Microconidia of all isolates were generally scarce, two- to four-septate, spindle-shaped, and 15 to 35 × 3 to 5 µm (average 21.3 × 4.2 µm). Chlamydospores were not observed. Based on these morphological characteristics, the pathogen was identified as Fusarium avenaceum (Fries) Saccardo (1). The pathogenicity on carrot was tested for isolate 19-14 by inoculating each of five carrot roots surface-disinfected with 2% NaOCl, by placing a mycelial plug into the surface of a wound created with a cork borer. Carrot roots inoculated with sterilized PDA plugs served as a negative control treatment. After 5 days of incubating the roots at 25°C, root rot symptoms identical to those observed on the source carrot plants developed on all inoculated roots, and the pathogen was re-isolated from each of these roots using the same procedure descibed above. There were no symptoms on the control roots. Morphological species identification was confirmed by sequencing the translation elongation factor (EF-1α) gene (2). Total DNA was extracted directly from fungal mycelium of isolate 19-14 with a DNeasy Plant Mini Kit (Qiagen, Hilden, Germany), and PCR amplification was performed with primer pair EF-1/EF-2 (2). Sequence analysis of the EF-1α gene revealed 100% nucleotide identity of isolate 19-14 (GenBank Accession No. KM102536) with the EF-1α sequences of two F. avenaceum isolates from Canada (KC999504 from rye and JX397864 from Triticum durum). To our knowledge, this is the first report of F. avenaceum causing collar, crown, and root rots of stored carrot in Serbia. Since F. avenaceum can produce several mycotoxins, including moniliformin, acuminatopyrone, and chrysogine (3), the presence of this pathogen on stored carrots could represent a significant constraint for carrot production in Serbia, for both direct yield losses and potential mycotoxin contamination. References: (1) J. F. Leslie and B. A. Summerell. The Fusarium Laboratory Manual, Blackwell Publishing, London, UK, 2006. (2) K. O'Donnell et al. Proc. Natl. Acad. Sci. U.S.A. 95:2044, 1998. (3) J. L. Sorenson. J. Agric. Food Chem. 57:1632, 2009. (4) Statistical Office, Republic of Serbia. Retrieved from http://webrzs.stat.gov.rs in May 2014.

2.
Plant Dis ; 98(10): 1449, 2014 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-30703995

RESUMO

Tulips (Tulipa sp. L.), popular spring-blooming perennials in the Liliaceae family, are one of the most important ornamental bulbous plants, which have been cultivated for cut flower, potted plant, garden plant, and for landscaping. In May 2013, during a survey to determine the presence of Cucumber mosaic virus (CMV, Cucumovirus, Bromoviridae) on ornamentals in Serbia, virus-like symptoms, including the presence of bright streaks, stripe and distortion of leaves, and reduced growth and flower size, were observed in an open field tulip production in the Krnjaca locality (a district of Belgrade, Serbia). Disease incidence was estimated at 20%. Symptomatic tulip plants were collected and tested for the presence of CMV by double-antibody sandwich (DAS)-ELISA using commercial diagnostic kit (Bioreba, AG, Reinach, Switzerland). Commercial positive and negative controls were included in each ELISA. Of the six tulip plants tested, all were positive for CMV. In bioassay, five plants of each Chenopodium quinoa, Nicotiana tabacum 'Samsun,' and N. glutinosa were mechanically inoculated with sap from selected ELISA-positive sample (79-13) using 0.01 M phosphate buffer (pH 7). Chlorotic local lesions on C. quinoa, and severe mosaic and leaf malformations on N. tabacum 'Samsun' and N. glutinosa, were observed 5 and 14 days post-inoculation, respectively. All mechanically inoculated plants were positive for CMV in DAS-ELISA testing. For further confirmation of CMV presence in tulip, total RNAs from all ELISA-positive symptomatic tulip plants were extracted with the RNeasy Plant Mini Kit (Qiagen, Hilden, Germany). Reverse transcription (RT)-PCR was performed with the One-Step RT-PCR Kit (Qiagen) using specific primer pair CMVCPfwd and CMVCPrev (1), which flank conserved fragment of the RNA3 including the entire coat protein (CP) gene and part of 3'- and 5'-UTRs. Total RNAs obtained from the Serbian watermelon CMV isolate (GenBank Accession No. JX280942) and healthy tulip leaves served as the positive and negative controls, respectively. The RT-PCR products of 871 bp were obtained from all six samples that were serologically positive to CMV, as well as from the positive control. No amplicon was recorded in the healthy control. The amplified product which derived from isolate 79-13 was purified (QIAquick PCR Purification Kit, Qiagen), directly sequenced in both directions using the same primer pair as in RT-PCR, deposited in GenBank (KJ854451), and analyzed by MEGA5 software (4). Sequence comparison of the complete CP gene (657 nt) revealed that the Serbian isolate 79-13 shared the highest nucleotide identity of 99.2% (99% amino acid identity) with CMV isolates from Japan (AB006813) and the United States (S70105). To our knowledge, this is the first report on the occurrence of CMV causing mosaic on Tulipa sp. in Serbia. Taking into account vegetative reproduction of tulips and the large scale of international trade with tulip seeding material, as well as wide host range of CMV including a variety of ornamentals (2,3), this is a very important discovery representing a serious threat for the floriculture industry in Serbia. References: (1) K. Milojevic et al. Plant Dis. 96:1706, 2012. (2) M. Samuitiene and M. Navalinskiene. Zemdirbyste-Agriculture 95:135, 2008. (3) D. Sochacki. J. Hortic. Res. 21:5, 2013. (4) K. Tamura et al. Mol. Biol. Evol. 28:2731, 2011.

3.
Plant Dis ; 98(10): 1435, 2014 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-30704015

RESUMO

Strawberry (Fragaria × ananassa Duch.) is the third most important berry crop in Serbia with average production ranging from 30,000 to 35,000 t on approximately 5,000 ha (2). In June 2013, symptoms of wilt and whole plant collapse were observed on approximately 25% plants growing in commercial strawberry crop of cv. Alba in the locality of Zablace (Moravica district). Initial symptoms included leaf chlorosis and wilt, followed by withering and necrosis of older leaves and reduced fruit production, eventually leading to plant collapse and desiccations. Internal vascular tissues of the crown showed distinct brown reddish discoloration. Three small pieces of infected roots, petioles, or crown vascular tissues were surface disinfested with 2% NaOCl and placed on five potato dextrose agars (PDA) per sample. After 7 days incubation at 23°C under 12 h of fluorescent light, nine monoconidial isolates were obtained (1) forming colonies with light purple mycelia. Colonies produced numerous hyaline, oval to ellipsoid microconidia (5 to 15 × 2.5 to 4.5 µm, average 8.45 × 2.25 µm), 3 to 5 septate fusoid macroconidia with pedicellate bases (20 to 50 × 2.70 to 6 µm, average 32.35 × 3.25 µm from 100 measured) and chlamydospores. Morphological and growth features were similar to the descriptions of Fusarium oxysporum Schlechtend emend. Snyder & Hansen (1). Pathogenicity of one selected isolate (97-13) was tested by dipping for 15 min the roots of five plants of each cultivar: Alba, Arosa, Clery, and Roxana into a conidial suspension (1 × 106 conidia/ml) harvested from a 7-day-old culture on PDA. Control plants were dipped in sterile distilled water. The inoculated plants were transplanted into pots containing sterilized peat and maintained in the greenhouse at 25°C. Thirty to thirty-five days post-inoculation, all plants developed wilt symptoms and vascular discoloration of crown tissues from which F. oxysporum was successfully re-isolated using the same method as for isolation. No symptoms were observed on any of the control plants. Morphological identification was confirmed by amplification and sequencing of a portion of the translation elongation factor-1 alpha (EF-1α) gene. Total DNA was extracted directly from fungal mycelium with a DNeasy Plant Mini Kit (Qiagen, Hilden, Germany) and PCR amplification performed with primers EF-1/EF-2 (4). Sequence analysis of EF-1α region revealed that Serbian isolate 97-13 (GenBank Accession No. KJ647280) shared 99 to 100% identity with the F. oxysporum sequences in GenBank. To our knowledge, this is the first report of Fusarium wilt on strawberry in Serbia. The presence of a new and potentially harmful disease may represent a serious constraint for strawberry production in Serbia. References: (1) J. F. Leslie and B. A. Summerell. The Fusarium Laboratory Manual, Blackwell Publishing, London, UK, 2006. (2) M. Nikolic et al. Acta Hort. 842:615, 2009. (3) K. O'Donnell et al. Proc. Natl. Acad. Sci. USA 95:2044, 1998.

4.
Plant Dis ; 97(1): 150, 2013 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-30722278

RESUMO

In July 2011, greenhouse-grown chrysanthemum hybrid plants (Chrysanthemum × morifolium) with symptoms resembling those associated with tospoviruses were observed in the Kupusina locality (West Backa District, Serbia). Disease incidence was estimated at 40%. Symptomatic plants with chlorotic ring spots and line patterns were sampled and tested by double antibody sandwich (DAS)-ELISA using polyclonal antisera (Bioreba AG, Reinach, Switzerland) against the two of the most devastating tospoviruses in the greenhouse floriculture industry: Tomato spotted wilt virus (TSWV) and Impatiens necrotic spot virus (INSV) (2). Commercial positive and negative controls and extracts from healthy chrysanthemum tissue were included in each ELISA. TSWV was detected serologically in 16 of 20 chrysanthemum samples and all tested samples were negative for INSV. The virus was mechanically transmitted from ELISA-positive chrysanthemum samples to five plants each of both Petunia × hybrida and Nicotiana tabacum 'Samsun' using chilled 0.01 M phosphate buffer (pH 7) containing 0.1% sodium sulfite. Inoculated plants produced local necrotic spots and systemic chlorotic/necrotic concentric rings, consistent with symptoms caused by TSWV (1). The presence of TSWV in ELISA-positive chrysanthemum plants and N. tabacum'Samsun' was further confirmed by conventional reverse transcription (RT)-PCR. Total RNAs were extracted with an RNeasy Plant Mini Kit (Qiagen, Hilden, Germany). RT-PCR was performed with the One-Step RT-PCR Kit (Qiagen) using primers TSWVCP-f/TSWVCP-r specific to the nucleocapsid protein (N) gene (4). A Serbian isolate of TSWV from tobacco (GenBank Accession No. GQ373173) and RNA extracted from a healthy chrysanthemum plant were used as positive and negative controls, respectively. An amplicon of the correct predicted size (738-bp) was obtained from each of the plants assayed, and that derived from chrysanthemum isolate 529-11 was purified (QIAqick PCR Purification Kit, Qiagen) and sequenced (JQ692106). Sequence analysis of the partial N gene, conducted with MEGA5 software, revealed the highest nucleotide identity of 99.6% (99% amino acid identity) with 12 TSWV isolates deposited in GenBank originating from different hosts from Italy (HQ830186-87, DQ431237-38, DQ398945), Montenegro (GU355939-40, GU339506, GU339508), France (FR693055-56), and the Czech Republic (AJ296599). The consensus maximum parsimony tree obtained on a 705-bp partial N gene sequence of TSWV isolates available in GenBank revealed that Serbian TSWV isolate 529-11 from chrysanthemum was clustered in the European subpopulation 2, while the Serbian isolates from tomato (GU369723) and tobacco (GQ373172-73 and GQ355467) were clustered in the European subpopulation 1 denoted previously (3). The distribution of TSWV in commercial chrysanthemum crops is wide (2). To our knowledge, this is the first report of TSWV infecting chrysanthemum in Serbia. Since chrysanthemum popularity and returns have been rising rapidly, the presence of TSWV may significantly reduce quality of crops in Serbia. References: (1) Anonymous. OEPP/EPPO Bull. 34:271, 2004. (2) Daughtrey et al. Plant Dis. 81:1220, 1997. (3) I. Stankovic et al. Acta Virol. 55:337, 2011. (4) A. Vucurovic et al. Eur. J. Plant Pathol. 133:935, 2012.

5.
Plant Dis ; 97(7): 1004, 2013 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-30722559

RESUMO

Peperomia tuisana C.DC. ex Pittier (family Piperaceae) is an attractive succulent grown as an ornamental. Despite its tropical origins, it can be successfully grown indoors in any climate. In March 2012, three samples of P. tuisana showing virus-like symptoms were collected from a commercial greenhouse in Zemun (District of Belgrade, Serbia) in which estimated disease incidence was 80%. Infected plants showed symptoms including necrotic ringspots and line patterns that enlarged and caused necrosis of leaves. A serious leaf drop led to growth reduction and even death of the plant. Leaves from three symptomatic P. tuisana plants were sampled and analyzed by double-antibody sandwich (DAS)-ELISA using commercial diagnostic kits (Bioreba AG, Reinach, Switzerland) against the most common viral pathogens of ornamentals: Cucumber mosaic virus (CMV), Tomato spotted wilt virus (TSWV), and Impatiens necrotic spot virus (INSV) (1,2). Commercial positive and negative controls were included in each ELISA. Serological analyses showed that all plants were positive for CMV and negative for TSWV and INSV. The ELISA-positive sample (isolate 1-12) was mechanically inoculated onto five plants each of three test species as well as of healthy young P. tuisana using 0.01 M phosphate buffer (pH 7). Chlorotic local lesions on Chenopodium quinoa and severe mosaic and leaf malformations were observed on all inoculated Nicotiana tabacum 'Samsun' and N. glutinosa. Also, the virus was successfully mechanically transmitted to P. tuisana that reacted with symptoms identical to those observed on the original host plants. All mechanically inoculated plants were positive for CMV in DAS-ELISA. For further confirmation of CMV infection, reverse transcription (RT)-PCR was performed on extracts made from symptomatic P. tuisana, N. tabacum 'Samsun,' and N. glutinosa leaf materials. Total RNAs were extracted with the RNeasy Plant Mini Kit (Qiagen, Hilden, Germany) and RT-PCR was carried out using One-Step RT-PCR Kit (Qiagen). A CMV-specific primer pair, CMVCPfwd and CMVCPrev (3), which amplifies an 871-bp fragment of the entire coat protein (CP) gene and part of 3'- and 5'-UTRs, were used for both amplification and sequencing. Total RNAs obtained from the Serbian CMV isolate (HM065510) and healthy P. tuisana were used as positive and negative controls, respectively. A product of the correct predicted size was obtained in all naturally and mechanically infected plants, as well as positive control. No amplicon was recorded in the healthy control. The amplified product derived from isolate 1-12 was purified (QIAquick PCR Purification Kit, Qiagen), directly sequenced in both directions, deposited in GenBank (KC505441), and analyzed by MEGA5 software (4). Sequence comparison of the complete CP gene (657 nt) revealed that the Serbian isolate 1-12 shared the highest nucleotide identity of 99.1% (99.5% amino acid identity) with the Japanese isolate (AB006813). To our knowledge, this is the first report on the occurrence of CMV in P. tuisana in Serbia. This is also an important discovery since P. tuisana is commonly grown together with other ornamental hosts of CMV, and thus could represent a serious threat for future expansion of CMV in the greenhouse floriculture industry in Serbia. References: (1) M. L. Daughtrey et al. Plant Dis. 81:1220, 1997. (2) S. Flasinski et al. Plant Dis. 79:843, 1995. (3) K. Milojevic et al. Plant Dis. 96:1706, 2012. (4) K. Tamura et al. Mol. Biol. Evol. 28:2731, 2011.

6.
Plant Dis ; 97(6): 850, 2013 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-30722590

RESUMO

Brugmansia (Brugmansia spp.), also known as Angel's trumpet, is a perennial shrub in the Solanaceae that is a popular landscape plant in the tropics and subtropics, and potted plant in temperate regions. In April 2012, virus-like symptoms including chlorotic leaf patterns and curling followed by necrosis and distortion of leaves were observed on five outdoor-grown brugmansia plants in a private garden in Mackovac, Rasina District, Serbia. Symptomatic leaves were tested for the presence of several common ornamental viruses including Tomato spotted wilt virus (TSWV), Impatiens necrotic spot virus (INSV), Cucumber mosaic virus (CMV), and Tobacco mosaic virus (TMV) by commercial double-antibody sandwich (DAS)-ELISA diagnostic kits (Bioreba AG, Reinach, Switzerland). Commercial positive and negative controls and extract from healthy brugmansia leaves were included in each ELISA. TSWV was detected serologically in all five brugmansia samples and all tested samples were negative for INSV, CMV, and TMV. The virus was mechanically transmitted from an ELISA-positive sample (41-12) to five plants of each Petuina × hybrida and Nicotiana glutinosa. Inoculated P. × hybrida plants showed local necrotic lesions and N. glutinosa showed mosaic and systemic necrosis 4 and 12 days post-inoculation, respectively, which were consistent with symptoms caused by TSWV (1). For further confirmation of TSWV infection, reverse transcription (RT)-PCR was performed with the OneStep RT-PCR (Qiagen, Hilden, Germany) using a set of TSWV-specific primers, TSWV CP-f and TSWV CP-r (4), designed to amplify a 738-bp fragment of the nucleocapsid protein (N) gene. Total RNAs from naturally infected brugmansia and symptomatic N. glutinosa plants were extracted using the RNeasy Plant Mini Kit (Qiagen). Total RNAs obtained from the Serbian tobacco isolate of TSWV (GenBank Accession No. GQ373173) and healthy brugmansia plants were used as positive and negative controls, respectively. The expected size of the RT-PCR product was amplified from symptomatic brugmansia and N. glutinosa but not from healthy tissues. The amplified product derived from the isolate 41-12 was sequenced directly after purification with the QIAquick PCR Purification kit (Qiagen), deposited in GenBank (JX468080), and subjected to sequence analysis by MEGA5 software (3). Sequence comparisons revealed that the Serbian isolate 41-12 shared the highest nucleotide identity of 99.9% (99.5% amino acid identity) with an Italian TSWV isolate P105/2006RB (DQ915946) originating from pepper. To our knowledge, this is the first report of TSWV on brugmansia in Serbia. Due to the increasing popularity and economic importance of brugmansia as an ornamental crop, thorough inspections and subsequent testing for TSWV and other viruses are needed. This high-value ornamental plant may act also as reservoir for the virus that can infect other ornamentals and cultivated crops, considering that TSWV has a very broad host range (2). References: (1) Anonymous. OEPP/EPPO Bull. 34:271, 2004. (2) G. Parrella et al. J. Plant Pathol. 85:227, 2003. (3) K. Tamura et al. Mol. Biol. Evol. 28:2731, 2011. (4) A. Vucurovic et al. Eur. J. Plant Pathol. 133:935, 2012.

7.
Plant Dis ; 96(6): 918, 2012 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-30727368

RESUMO

In June 2011, extensive bleaching and numerous small whitish spots on leaves were observed in an onion (Allium cepa) seed crop as well as chlorotic spots and streaks in the neighboring garlic (A. sativum) bulb crop in the Aleksandrovo locality (Central Banat District, Serbia). Affected plants occurred throughout the field and disease incidence was estimated at 60% in the onion and 40% in the garlic crop. A high population of Thrips tabaci that was found in both crops, and local necrotic spots on Petunia × hybrida mechanically inoculated with infected onion or garlic sap by a chilled 0.01 M phosphate buffer, pH 7.0, containing 0.1% sodium sulfite (1), suggested the presence of a Tospovirus. For these reasons, sampled symptomatic onion and garlic plants were tested for the presence of Tomato spotted wilt virus (TSWV) and Iris yellow spot virus (IYSV) using commercial double-antibody sandwich-ELISA diagnostic kits (Bioreba AG, Reinach, Switzerland). Commercial positive and negative controls and extracts from healthy onion and garlic tissue were included in each ELISA. Of the 18 onion and 10 garlic plants tested, 16 and 7 samples, respectively, were positive for TSWV, and all were negative for IYSV. The identity of TSWV was further confirmed by conventional reverse transcription (RT)-PCR analysis. Total RNAs were extracted with an RNeasy Plant Mini Kit (Qiagen, Hilden, Germany) and RT-PCR was performed with the One-Step RT-PCR Kit (Qiagen) using TSWV-specific forward (5'-GGTTAAGCTCACTAAGAAARCA-3') and reverse primers (5'-TTTAACYCCRAACATTTCATAGA-3'), designed to amplify a 738-bp fragment of the nucleocapsid protein (N) gene. Total RNAs obtained from plants infected with a Serbian isolate of TSWV (GenBank Accession No. GQ373173) and healthy onion garlic plants were used as positive and negative controls, respectively. An amplicon of the expected size was produced from the 16 onion and 7 garlic ELISA-positive plants, but not from healthy controls. The amplified products derived from the two selected isolates, 114-11 from onion and 115-11 from garlic, were sequenced directly after purification with the QIAquick PCR Purification kit (Qiagen); the sequences obtained were allocated GenBank Accession Nos. JQ619234 and JQ619235, respectively. Sequence analysis of the partial N gene, conducted with MEGA5 software (4), revealed 99.9% nucleotide identity (100% amino acid identity) between the two Serbian Allium isolates. Serbian onion and garlic isolates showed the highest nucleotide identities of 100% and 99.9% with Serbian summer squash isolate (JF303081) and tobacco isolate from Montenegro (GU369729), respectively. Well-established in many European countries, TSWV has been reported as an important constraint to the production of tomato, pepper, tobacco, and ornamentals (2), but the information on TSWV naturally infecting Allium spp. is limited. The presence of TSWV on onion and garlic in Serbia revealed that its known host range has expanded in Europe. To our knowledge, other than Marchoux's unpublished data (3), there are no other reports of garlic as a natural host of TSWV. The TSWV presence on Allium spp. represents a serious threat for these crops in Serbia, considering that it is prevalent in other crops in the area and its vectors are widespread. References: (1) Anonymous. OEPP/EPPO Bull. 34:271, 2004. (2) H. R. Pappu et al. Virus Res. 141:219, 2009. (3) G. Parrella et al. J. Plant Pathol. 85:227, 2003. (4) K. Tamura et al. Mol. Biol. Evol. 28:2731, 2011.

8.
Plant Dis ; 96(11): 1706, 2012 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-30727495

RESUMO

In June 2012, field-grown watermelon plants (Citrullus lanatus L.) with virus-like symptoms were observed in Silbas locality, South Backa District of Serbia. Plants infected early in the growing season showed severe symptoms including stunting, mosaic, mottling, blistering, and leaf curling with reduced leaf size, while those infected at later stages exhibited only a mild mosaic. Affected plants were spread across the field and disease incidence was estimated at 40%. Thirteen symptomatic watermelon plants were sampled and analyzed by double-antibody sandwich (DAS)-ELISA using a commercial diagnostic kit (Bioreba AG, Reinach, Switzerland) against the most important watermelon viruses: Cucumber mosaic virus (CMV), Watermelon mosaic virus (WMV), Zucchini yellow mosaic virus (ZYMV), Papaya ringspot virus (PRSV), and Squash mosaic virus (SqMV) (1). Commercial positive and negative controls and an extract from healthy watermelon tissue were included in each ELISA. Serological analyses showed that all plants were positive for CMV and negative for ZYMV, WMV, PRSV, and SqMV. The virus was mechanically transmitted from an ELISA-positive sample (449-12) to five plants of each Citrullus lanatus 'Creamson sweet' and Chenopodium amaranticolor using 0.01 M phosphate buffer (pH 7) with Serbian CMV isolate from Cucurbita pepo 'Olinka' (GenBank Accession No. HM065510) and healthy watermelon plants as positive and negative controls, respectively. Small necrotic lesions on C. amaranticolor and mild mosaic with dark green vein banding on watermelon leaves were observed on all inoculated plants 5 and 14 days post-inoculation, respectively. For further confirmation of CMV infection, reverse transcription (RT)-PCR was performed with the One-Step RT-PCR Kit (Qiagen, Hilden, Germany) using specific primers CMVCPfwd (5'-TGCTTCTCCRCGARWTTGCGT-3') and CMVCPrev (5'-CGTAGCTGGATGGACAACCCG-3'), designed to amplify an 871-bp fragment of the RNA3 including the whole CP gene. Total RNA from 12 naturally infected and five mechanically infected watermelon plants was extracted with the RNease Plant Mini Kit (Qiagen). Total RNA obtained from the Serbian CMV isolate (HM065510) and healthy watermelon plants were used as positive and negative controls, respectively. The expected size of RT-PCR products were amplified from all naturally and mechanically infected watermelon plants but not from healthy tissues. The PCR product derived from isolate 449-12 was purified and directly sequenced using the same primer pair as in RT-PCR (JX280942) and analyzed by MEGA5 software (3). Sequence comparison of the complete CP gene (657 nt) revealed that the Serbian isolate 449-12 shared the highest nucleotide identity of 98.9% (99.1% amino acid identity) with the Spanish melon isolate (AJ829777) and Syrian tomato isolate (AB448696). To our knowledge, this is the first report of CMV on watermelon in Serbia. CMV is widely distributed within the Mediterranean basin where it has a substantial impact on many agricultural crops (2) and is often found to be prevalent during pumpkin and squash surveys in Serbia (4). The presence of CMV on watermelon could therefore represent a serious threat to this valuable crop in Serbia. References: (1) L. M. da Silveira et al. Trop. Plant Pathol. 34:123, 2009. (2) M. Jacquemond. Adv. Virus Res. 84:439, 2012. (3) K. Tamura et al. Mol. Biol. Evol. 28:2731, 2011. (4) A. Vucurovic et al. Eur. J. Plant Pathol. 133:935, 2012.

9.
Acta Virol ; 55(4): 337-47, 2011.
Artigo em Inglês | MEDLINE | ID: mdl-22149499

RESUMO

In a four-year survey to determine the presence and distribution of viruses in tobacco crops at 17 localities of the Vojvodina Province and Central Serbia, 380 samples were collected and analyzed by DAS-ELISA. Out of the seven viruses tested, tomato spotted wilt virus (TSWV), potato virus Y (PVY), tobacco mosaic virus (TMV), cucumber mosaic virus (CMV), and alfalfa mosaic virus (AMV) were detected in 37.9, 33.4, 28.7, 23.9, and 15.5% of the total tested samples, respectively. TSWV was the most frequently found virus at the localities of Central Serbia, while PVY and CMV were the most frequent viruses in the Vojvodina Province. Single infections were prevalent in years 2005-2007 and the most frequent were those of PVY. A triple combination of those viruses was most frequent mixed infection type in 2008. The presence of all five detected viruses was confirmed in selected ELISA-positive samples by RT-PCR and sequencing. The comparisons of obtained virus isolate sequences with those available in NCBI, confirmed the authenticity of serologically detected viruses. Phylogenetic analysis based on partial nucleocapsid gene sequences revealed a joint clustering of Serbian, Bulgarian and Montenegrin TSWV isolates into one geographic subpopulation, which was distinct from the other subpopulation of TSWV isolates from the rest of the European countries. The high incidence of viruses in Serbian tobacco crops highlights the importance of enhancing farmers knowledge towards better implementation of control strategies for preventing serious losses.


Assuntos
Nicotiana/virologia , Filogenia , Doenças das Plantas/virologia , Vírus de Plantas/isolamento & purificação , Tospovirus/classificação , Tospovirus/genética , Vírus do Mosaico da Alfafa/genética , Vírus do Mosaico da Alfafa/imunologia , Vírus do Mosaico da Alfafa/isolamento & purificação , Cucumovirus/genética , Cucumovirus/imunologia , Cucumovirus/isolamento & purificação , Ensaio de Imunoadsorção Enzimática , Dados de Sequência Molecular , Vírus de Plantas/genética , Vírus de Plantas/imunologia , Potyvirus/genética , Potyvirus/imunologia , Potyvirus/isolamento & purificação , Transcrição Reversa , Análise de Sequência de DNA , Sérvia , Vírus do Mosaico do Tabaco/genética , Vírus do Mosaico do Tabaco/imunologia , Vírus do Mosaico do Tabaco/isolamento & purificação , Tospovirus/isolamento & purificação , Iugoslávia
11.
Ann Fr Anesth Reanim ; 20(9): 745-51, 2001 Nov.
Artigo em Francês | MEDLINE | ID: mdl-11759315

RESUMO

OBJECTIVE: To measure severe acute pain (SAP) frequency, to describe SAP management and to bring to view the conditions of analgesia success in emergency medicine. DESIGN: Multicentre prospective survey: 7 days in Emergency Departments (ED), 30 days in Mobile Intensive Care Units (MICU). Multivariate analysis to measure the independent effect on pain relief of factors identified by Chi squared test. SETTING: All of 6 ED and 8 MICU of a French region. PATIENTS: Over 15 years of age. MAIN OUTCOME MEASURES: Pain intensity was assessed with Visual Analog Scale (VAS) before and after ED or MICU management. SAP group (defined by initial VAS score > 40 mm) was analyzed for pain relief (defined by final VAS score < or = 40 mm). Influence on pain relief through pain aetiology, initial pain intensity, treatment delay and opioid use was analyzed. RESULTS: 1,082 fulfilled medical forms for 3,419 eligible patients. SAP frequency was estimated 36% (CI95 = 34-38%) in ED and 29% (CI95 = 25-33%) in MICU. SAP (n = 368) was often persistent: 45% (CI95 = 43-47%) after discharge from ED and 26% (CI95 = 22-30%) after MICU intervention. The prognostic factors of pain control success revealed by Chi squared test were: MICU (vs ED), treatment delay < or = 3 hours (vs > 3 hours), opioid use (vs non opioid use) and VAS pain level < or = 70 mm (vs > 70 mm). The last 3 factors were confirmed by multivariate analysis. Treatment delay, opioid use, and pain level were found to be determinants of efficient analgesia for SAP. CONCLUSION: Despite the high frequency of SAP in ED and MICU, pain control is not satisfying. Opioid use and early treatment are determinant in analgesia efficiency for SAP and should be therefore encouraged to improve pain relief in emergency medicine.


Assuntos
Analgesia/normas , Emergências , Manejo da Dor , Doença Aguda , Adulto , Humanos , Dor/diagnóstico , Dor/epidemiologia , Medição da Dor , Prevalência , Estudos Prospectivos , Índice de Gravidade de Doença
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA