RESUMO
High-content cell profiling has proven invaluable for single-cell phenotyping in response to chemical perturbations. However, methods with improved throughput, information content and affordability are still needed. We present a new high-content spectral profiling method named vibrational painting (VIBRANT), integrating mid-infrared vibrational imaging, multiplexed vibrational probes and an optimized data analysis pipeline for measuring single-cell drug responses. Three infrared-active vibrational probes were designed to measure distinct essential metabolic activities in human cancer cells. More than 20,000 single-cell drug responses were collected, corresponding to 23 drug treatments. The resulting spectral profile is highly sensitive to phenotypic changes under drug perturbation. Using this property, we built a machine learning classifier to accurately predict drug mechanism of action at single-cell level with minimal batch effects. We further designed an algorithm to discover drug candidates with new mechanisms of action and evaluate drug combinations. Overall, VIBRANT has demonstrated great potential across multiple areas of phenotypic screening.
Assuntos
Neoplasias , Humanos , Algoritmos , Aprendizado de MáquinaRESUMO
Cells must access resources to survive, and the anatomy of multicellular structures influences this access. In diverse multicellular eukaryotes, resources are provided by internal conduits that allow substances to travel more readily through tissue than they would via diffusion. Microbes growing in multicellular structures, called biofilms, are also affected by differential access to resources and we hypothesized that this is influenced by the physical arrangement of the cells. In this study, we examined the microanatomy of biofilms formed by the pathogenic bacterium Pseudomonas aeruginosa and discovered that clonal cells form striations that are packed lengthwise across most of a mature biofilm's depth. We identified mutants, including those defective in pilus function and in O-antigen attachment, that show alterations to this lengthwise packing phenotype. Consistent with the notion that cellular arrangement affects access to resources within the biofilm, we found that while the wild type shows even distribution of tested substrates across depth, the mutants show accumulation of substrates at the biofilm boundaries. Furthermore, we found that altered cellular arrangement within biofilms affects the localization of metabolic activity, the survival of resident cells, and the susceptibility of subpopulations to antibiotic treatment. Our observations provide insight into cellular features that determine biofilm microanatomy, with consequences for physiological differentiation and drug sensitivity.
Assuntos
Antibacterianos , Infecções por Pseudomonas , Humanos , Antibacterianos/farmacologia , Pseudomonas aeruginosa/metabolismo , Biofilmes , Infecções por Pseudomonas/microbiologia , Fímbrias BacterianasRESUMO
Cells require a constant supply of fatty acids to survive and proliferate. Fatty acids incorporate into membrane and storage glycerolipids through a series of endoplasmic reticulum (ER) enzymes, but how these enzymes are regulated is not well understood. Here, using a combination of CRISPR-based genetic screens and unbiased lipidomics, we identified calcineurin B homologous protein 1 (CHP1) as a major regulator of ER glycerolipid synthesis. Loss of CHP1 severely reduces fatty acid incorporation and storage in mammalian cells and invertebrates. Mechanistically, CHP1 binds and activates GPAT4, which catalyzes the initial rate-limiting step in glycerolipid synthesis. GPAT4 activity requires CHP1 to be N-myristoylated, forming a key molecular interface between the two proteins. Interestingly, upon CHP1 loss, the peroxisomal enzyme, GNPAT, partially compensates for the loss of ER lipid synthesis, enabling cell proliferation. Thus, our work identifies a conserved regulator of glycerolipid metabolism and reveals plasticity in lipid synthesis of proliferating cells.
Assuntos
Proteínas de Ligação ao Cálcio/metabolismo , Retículo Endoplasmático/enzimologia , Glicerídeos/biossíntese , Glicerol-3-Fosfato O-Aciltransferase/metabolismo , Lipogênese , Células 3T3 , Aciltransferases/genética , Aciltransferases/metabolismo , Animais , Caenorhabditis elegans/genética , Caenorhabditis elegans/metabolismo , Proteínas de Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/metabolismo , Proteínas de Ligação ao Cálcio/genética , Proliferação de Células , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Drosophila melanogaster , Retículo Endoplasmático/efeitos dos fármacos , Retículo Endoplasmático/patologia , Ativação Enzimática , Regulação Enzimológica da Expressão Gênica , Glicerol-3-Fosfato O-Aciltransferase/genética , Células HEK293 , Células HeLa , Células Hep G2 , Humanos , Células Jurkat , Lipogênese/efeitos dos fármacos , Lipogênese/genética , Camundongos , Ácido Palmítico/toxicidade , Ligação ProteicaRESUMO
Nanomedicine has emerged as a revolutionary strategy of drug delivery. However, fundamentals of the nano-neuro interaction are elusive. In particular, whether nanocarriers can cross the blood-brain barrier (BBB) and release the drug cargo inside the brain, a basic process depicted in numerous books and reviews, remains controversial. Here, we develop an optical method, based on stimulated Raman scattering, for imaging nanocarriers in tissues. Our method achieves a suite of capabilities-single-particle sensitivity, chemical specificity, and particle counting capability. With this method, we visualize individual intact nanocarriers crossing the BBB of mouse brains and quantify the absolute number by particle counting. The fate of nanocarriers after crossing the BBB shows remarkable heterogeneity across multiple scales. With a mouse model of aging, we find that blood-brain transport of nanocarriers decreases with age substantially. This technology would facilitate development of effective therapeutics for brain diseases and clinical translation of nanocarrier-based treatment in general.
Assuntos
Encefalopatias , Nanomedicina , Animais , Camundongos , Encéfalo/diagnóstico por imagem , Barreira Hematoencefálica/diagnóstico por imagem , EnvelhecimentoRESUMO
Plastics are now omnipresent in our daily lives. The existence of microplastics (1 µm to 5 mm in length) and possibly even nanoplastics (<1 µm) has recently raised health concerns. In particular, nanoplastics are believed to be more toxic since their smaller size renders them much more amenable, compared to microplastics, to enter the human body. However, detecting nanoplastics imposes tremendous analytical challenges on both the nano-level sensitivity and the plastic-identifying specificity, leading to a knowledge gap in this mysterious nanoworld surrounding us. To address these challenges, we developed a hyperspectral stimulated Raman scattering (SRS) imaging platform with an automated plastic identification algorithm that allows micro-nano plastic analysis at the single-particle level with high chemical specificity and throughput. We first validated the sensitivity enhancement of the narrow band of SRS to enable high-speed single nanoplastic detection below 100 nm. We then devised a data-driven spectral matching algorithm to address spectral identification challenges imposed by sensitive narrow-band hyperspectral imaging and achieve robust determination of common plastic polymers. With the established technique, we studied the micro-nano plastics from bottled water as a model system. We successfully detected and identified nanoplastics from major plastic types. Micro-nano plastics concentrations were estimated to be about 2.4 ± 1.3 × 105 particles per liter of bottled water, about 90% of which are nanoplastics. This is orders of magnitude more than the microplastic abundance reported previously in bottled water. High-throughput single-particle counting revealed extraordinary particle heterogeneity and nonorthogonality between plastic composition and morphologies; the resulting multidimensional profiling sheds light on the science of nanoplastics.
Assuntos
Água Potável , Microscopia , Humanos , Microplásticos , Plásticos , AlgoritmosRESUMO
Within biofilms, gradients of electron acceptors such as oxygen stimulate the formation of physiological subpopulations. This heterogeneity can enable cross-feeding and promote drug resilience, features of the multicellular lifestyle that make biofilm-based infections difficult to treat. The pathogenic bacterium Pseudomonas aeruginosa produces pigments called phenazines that can support metabolic activity in hypoxic/anoxic biofilm subzones, but these compounds also include methylated derivatives that are toxic to their producer under some conditions. In this study, we uncover roles for the global regulators RpoS and Hfq/Crc in controlling the beneficial and detrimental effects of methylated phenazines in biofilms. Our results indicate that RpoS controls phenazine methylation by modulating activity of the carbon catabolite repression pathway, in which the Hfq/Crc complex inhibits translation of the phenazine methyltransferase PhzM. We find that RpoS indirectly inhibits expression of CrcZ, a small RNA that binds to and sequesters Hfq/Crc, specifically in the oxic subzone of P. aeruginosa biofilms. Deletion of rpoS or crc therefore leads to overproduction of methylated phenazines, which we show leads to increased metabolic activity-an apparent beneficial effect-in hypoxic/anoxic subpopulations within biofilms. However, we also find that under specific conditions, biofilms lacking RpoS and/or Crc show increased sensitivity to phenazines indicating that the increased metabolic activity in these mutants comes at a cost. Together, these results suggest that complex regulation of PhzM allows P. aeruginosa to simultaneously exploit the benefits and limit the toxic effects of methylated phenazines.
Assuntos
Fenazinas , RNA , Metilação , Fenazinas/farmacologia , RNA/metabolismo , Biofilmes , Pseudomonas aeruginosa/metabolismo , Proteínas de Bactérias/metabolismoRESUMO
ConspectusFirst predicted more than 100 years ago, Raman scattering is a cornerstone of photonics, spectroscopy, and imaging. The conventional framework of understanding Raman scattering was built on Raman cross section σRaman. Carrying a dimension of area, σRaman characterizes the interaction strength between light and molecules during inelastic scattering. The numerical values of σRaman turn out to be many orders of magnitude smaller in comparison to the linear absorption cross sections σAbsorption of similar molecular systems. Such an enormous gap has been the reason for researchers to believe the extremely feeble Raman scattering ever since its discovery. However, this prevailing picture is conceptually problematic or at least incomplete due to the fact that Raman scattering and linear absorption belong to different orders of light-matter interaction.In this Account, we will summarize an alternate way to think about Raman scattering, which we term stimulated response formulation. To capture the third-order interaction nature of Raman scattering, we introduced stimulated Raman cross section, σSRS, defined as the intrinsic molecular property in response to the external photon fluxes. Foremost, experimental measurement of σSRS turns out to be not weak at all or even larger when fairly compared with electronic counterparts of the same order. The analytical expression for σSRS derived from quantum electrodynamics also supports the measurement and proves that σSRS is intrinsically strong. Hence, σRaman and σSRS can be extremely small and large, respectively, for the same molecule at the same time. Our subsequent theoretical studies show that stimulated response formulation can unify spontaneous emission, stimulated emission, spontaneous Raman, and stimulated Raman via eq 10, in a coherent and symmetric way. In particular, an Einstein-coefficient-like equation, eq 12a, was derived, showing that σRaman can be explicitly expressed as σSRS multiplied by an effective photon flux arising from zero-point fluctuation of the vacuum. The feeble vacuum fluctuation hence explains how σSRS can be intrinsically strong while, at the same time, σRaman ends up being many orders of magnitude smaller when both compared to the electronic counterparts. These two sides of the same coin prompted us to propose "the duality of Raman scattering" (Table 1). Finally, this formulation naturally leads to a quantitative treatment of stimulated Raman scattering (SRS) microscopy, providing an intuitive, molecule-centric explanation as to how SRS microscopy can outperform regular Raman microscopy. Hence, as unveiled by the new formulation, a duality of Raman scattering has emerged, with implications for both fundamental science and practical technology.
RESUMO
Ferroptosis, an iron-dependent form of cell death driven by lipid peroxidation, provides a potential treatment avenue for drug-resistant cancers and may play a role in the pathology of some degenerative diseases. Identifying the subcellular membranes essential for ferroptosis and the sequence of their peroxidation will illuminate drug discovery strategies and ferroptosis-relevant disease mechanisms. In this study, we employed fluorescence and stimulated Raman scattering imaging to examine the structure-activity-distribution relationship of ferroptosis-modulating compounds. We found that, although lipid peroxidation in various subcellular membranes can induce ferroptosis, the endoplasmic reticulum (ER) membrane is a key site of lipid peroxidation. Our results suggest an ordered progression model of membrane peroxidation during ferroptosis that accumulates initially in the ER membrane and later in the plasma membrane. Thus, the design of ER-targeted inhibitors and inducers of ferroptosis may be used to optimally control the dynamics of lipid peroxidation in cells undergoing ferroptosis.
Assuntos
Ferroptose , Peroxidação de Lipídeos/fisiologia , Morte Celular , Membrana Celular/metabolismo , Ferro/metabolismoRESUMO
Cholesterol is essential for cells to grow and proliferate. Normal mammalian cells meet their need for cholesterol through its uptake or de novo synthesis1, but the extent to which cancer cells rely on each of these pathways remains poorly understood. Here, using a competitive proliferation assay on a pooled collection of DNA-barcoded cell lines, we identify a subset of cancer cells that is auxotrophic for cholesterol and thus highly dependent on its uptake. Through metabolic gene expression analysis, we pinpoint the loss of squalene monooxygenase expression as a cause of cholesterol auxotrophy, particularly in ALK+ anaplastic large cell lymphoma (ALCL) cell lines and primary tumours. Squalene monooxygenase catalyses the oxidation of squalene to 2,3-oxidosqualene in the cholesterol synthesis pathway and its loss results in accumulation of the upstream metabolite squalene, which is normally undetectable. In ALK+ ALCLs, squalene alters the cellular lipid profile and protects cancer cells from ferroptotic cell death, providing a growth advantage under conditions of oxidative stress and in tumour xenografts. Finally, a CRISPR-based genetic screen identified cholesterol uptake by the low-density lipoprotein receptor as essential for the growth of ALCL cells in culture and as patient-derived xenografts. This work reveals that the cholesterol auxotrophy of ALCLs is a targetable liability and, more broadly, that systematic approaches can be used to identify nutrient dependencies unique to individual cancer types.
Assuntos
Apoptose , Colesterol/metabolismo , Linfoma Anaplásico de Células Grandes/metabolismo , Linfoma Anaplásico de Células Grandes/patologia , Estresse Oxidativo , Esqualeno/metabolismo , Idoso , Animais , Linhagem Celular Tumoral , Proliferação de Células , Colesterol/biossíntese , Código de Barras de DNA Taxonômico , Farnesil-Difosfato Farnesiltransferase/genética , Farnesil-Difosfato Farnesiltransferase/metabolismo , Feminino , Humanos , Ferro/metabolismo , Linfoma Anaplásico de Células Grandes/enzimologia , Masculino , Lipídeos de Membrana/química , Lipídeos de Membrana/metabolismo , Camundongos , Camundongos Endogâmicos NOD , Receptores de LDL/genética , Receptores de LDL/metabolismo , Esqualeno Mono-Oxigenase/genética , Esqualeno Mono-Oxigenase/metabolismo , Adulto JovemRESUMO
Nanomedicine has brought significant advancements to healthcare by utilizing nanotechnology in medicine. Despite much promise, the further development of nanocarriers for clinical use has been hindered by a lack of understanding and visualization of nano-bio interactions. Conventional imaging methods have limitations in resolution, sensitivity, and specificity. This study introduces a label-free optical approach using stimulated Raman scattering (SRS) microscopy to image poly(lactic-co-glycolic acid) (PLGA) nanocarriers, the most widely used polymeric nanocarrier for delivery therapeutic agents, with single-particle sensitivity and quantification capabilities. A unique Raman peak was identified for PLGA ester, enabling generalized bio-orthogonal bond imaging. We demonstrated quantitative SRS imaging of PLGA nanocarriers across different biological systems from cells to animal tissues. This label-free imaging method provides a powerful tool for studying this prevalent nanocarrier and quantitatively visualizing their distribution, interaction, and clearance in vivo.
Assuntos
Microscopia , Nanopartículas , Animais , Copolímero de Ácido Poliláctico e Ácido Poliglicólico , Polímeros/química , Nanopartículas/químicaRESUMO
BACKGROUND AND OBJECTIVE: Asthma is a heterogeneous respiratory disease characterized by airway hyper-responsiveness and reversible airflow blockage. There is ongoing debate about the impact of vitamin D on asthma. This research is focused on investigating the correlation between serum levels of 25-hydroxyvitamin D and asthma. METHODS: This cross-sectional study comprised 22,708 eligible participants. Data on asthma and serum 25-hydroxyvitamin D levels from the National Health and Nutrition Examination Survey (NHANES) 2011-2018 were analyzed. Serum 25-hydroxyvitamin D levels were the main factor, with the presence of asthma as the outcome variable. Weighted logistic regression was utilized to investigate the relationship between serum levels of 25-hydroxyvitamin D and asthma, while accounting for factors such as age, gender, race, length of time in US, annual family income, education level, high-density lipoprotein, low-density lipoprotein, triglycerides, and cholesterol. RESULTS: Upon adjusting all variables in model III, epi-25-hydroxyvitamin D3 displayed a negative correlation with current asthma at the lower quartile Q1 (0.784, [0.697 to 0.922]), Q2 (0.841, [0.729 to 0.946]), Q3 (0.396, [0.240 to 0.653]) when compared to the highest quartile Q4 level. However, no significant difference was observed between asthma and 25-hydroxyvitamin D2, as well as 25-hydroxyvitamin D3. CONCLUSIONS: In the U.S. population, elevated levels of epi-25-hydroxyvitamin D3 are correlated with an increased risk of developing existing asthma. However, it is important to interpret this finding carefully given the constraints of cross-sectional studies.
RESUMO
Both spontaneous Raman scattering and stimulated Raman scattering (SRS) are cornerstones of modern photonics, spectroscopy, and imaging. However, a unified understanding of the ultimate detectability of Raman scattering is lacking, due to both historical and technical reasons. Starting from quantum electrodynamics, we formulate the fundamental detectability for both spontaneous Raman scattering and SRS. The key concept is recognizing spontaneous Raman scattering as stimulated Raman process driven by vacuum field fluctuation. A simple and unified expression, Eq. (17), is derived, which can be depicted on a two-dimensional phase-diagram-like graph with inherent symmetry. It turns out that the particle nature of light dictates the ultimate detectability of spontaneous Raman scattering, which can be represented by a line on this detectability diagram. Importantly, if provided with a reasonably strong Stokes photon flux, SRS can breach this fundamental limit and open uncharted territory of drastically accelerated measurement speed and much lower detection concentration relevant to biological imaging. Such new territory in the detectability diagram is otherwise forbidden by the spontaneous counterpart. Diagrammatical analysis explains the empirical observations, provides quantitative insights, and makes new predictions. Notably, recent experimental applications of SRS microscopy can almost entirely be captured by this diagram, further supporting the explanatory power of the theory. Thus, this unified diagrammatic approach outlines a framework to understand all Raman-based measurement and provides a theoretical explanation for the remarkable utility of the emerging SRS microscopy.
RESUMO
BACKGROUND: Atopic dermatitis (AD) is a chronic inflammatory skin disease that affects 15%-30% of children and 10% of adults globally, with its incidence being influenced by genetic, environmental, and various other factors. While the immune plays a crucial role in the development, the composition of gut microbiota and serum metabolites also contribute to its pathogenesis. SUBJECT: Study the characteristics of gut microbiota and serum metabolites in patients with atopic dermatitis METHOD: In this study, we collected stool and serum samples from 28 AD patients and 23 healthy individuals (NC) for metagenomic sequencing of gut microbiota and non-targeted metabolomic sequencing of serum. RESULT: Our results revealed a lower diversity of gut microbiota in the AD group compared to the NC group. The predominant Phylum in AD patients were Bacteroidetes, Pseudomonas, and Verrucomicrobia, with the most dominant bacterial genus being Faecalibacterium. At the species level, Prevotella copri and Faecalibacterium prausnitzii were found to be the most abundant bacteria. Significant differences in serum metabolite profiles were observed between NC and AD patients, with noticeable variations in metabolite expression levels. The majority of metabolites in the serum of AD patients exhibited low expression, while a few showed high expression levels. Notably, metabolites such as Cholesterol glucuronide, Styrene, Lutein, Betaine, Phosphorylcholine, Taurine, and Creatinine displayed the most pronounced alterations. CONCLUSION: These findings contribute to a further understanding of the complexities underlying this disease.
Assuntos
Dermatite Atópica , Fezes , Microbioma Gastrointestinal , Humanos , Dermatite Atópica/microbiologia , Dermatite Atópica/sangue , Microbioma Gastrointestinal/fisiologia , Masculino , Feminino , Adulto , Fezes/microbiologia , Criança , Adulto Jovem , Pessoa de Meia-Idade , Adolescente , Metaboloma/fisiologia , BacteroidetesRESUMO
Unmanned Aerial Vehicle (UAV) aerial sensors are an important means of collecting ground image data. Through the road segmentation and vehicle detection of drivable areas in UAV aerial images, they can be applied to monitoring roads, traffic flow detection, traffic management, etc. As well, they can be integrated with intelligent transportation systems to support the related work of transportation departments. Existing algorithms only realize a single task, while intelligent transportation requires the simultaneous processing of multiple tasks, which cannot meet complex practical needs. However, UAV aerial images have the characteristics of variable road scenes, a large number of small targets, and dense vehicles, which make it difficult to complete the tasks. In response to these issues, we propose to implement road segmentation and on-road vehicle detection tasks in the same framework for UAV aerial images, and we conduct experiments on a self-constructed dataset based on the DroneVehicle dataset. For road segmentation, we propose a new algorithm C-DeepLabV3+. The new algorithm introduces the coordinate attention (CA) module, which can obtain more accurate segmentation target location information and make the segmentation target edges more continuous. Also, the improved algorithm introduces the cascade feature fusion module to prevent the loss of detail information in road segmentation and to obtain better segmentation performance. For vehicle detection, we propose an improved algorithm S-YOLOv5 by adding a parameter-free lightweight attention module SimAM. Finally, the proposed road segmentation-vehicle detection framework is utilized to unite the C-DeepLabV3+ and S-YOLOv5 algorithms for the implementation of the serial tasks. The experimental results show that on the constructed ViDroneVehicle dataset, the C-DeepLabV3+ algorithm has an mPA value of 98.75% and an mIoU value of 97.53%, which can better segment the road area and solve the problem of occlusion. The mAP value of the S-YOLOv5 algorithm has an mAP value of 97.40%, which is more than YOLOv5's 96.95%, which effectively reduces the vehicle omission and false detection rates. By comparison, the results of both algorithms are superior to multiple state-of-the-art methods. The overall framework proposed in this paper has superior performance and is capable of realizing high-quality and high-precision road segmentation and vehicle detection from UAV aerial images.
RESUMO
Substituting mineral fertilizer with manure or a combination of organic amendments plus beneficial soil microorganisms (bio-manure) in agriculture is a standard practice to mitigate N2O and NO emissions while enhancing crop performance and nitrogen use efficiency (NUE). Here, we conducted a greenhouse trial for three consecutive vegetable growth seasons for Spinach, Coriander herb, and Baby bok choy to reveal the response of N2O and NO emissions, NUE, and vegetable quality index (VQI) to fertilization strategies. Strategies included solely chemical nitrogen fertilizer (CN), 20 (M1N4) and 50% (M1N1) substitution with manure, 20 (BM1N4) and 50% (BM1N1) substitution with bio-manure, and no fertilization as a control and were organized in a completely randomized design (n = 3). Manure decreased N2O emissions by 24-45% and bio-manure by 44-53% compared to CN. Manure reduced NO emissions by 28-41% and bio-manure by 55-63%. Bio-manure increased NUE by 0.04-31% and yields by 0.05-61% while improving VQI, attributed to yield growth and reduced vegetable NO3- contents. Improvement of root growth was the main factor that explained the rise of NUE; NUE declined with the increase of N2O emissions, showing the loss of vegetable performance under conditions when denitrification processes prevailed. Under the BM1N1, the highest VQI and the lowest yield-scaled N-oxide emissions were observed, suggesting that substitution with bio-manure can improve vegetable quality and mitigate N-oxide emissions. These findings indicate that substituting 50% of mineral fertilizer with bio-manure can effectively improve NUE and VQI and mitigate N-oxides in intensive vegetable production.
Assuntos
Fertilizantes , Esterco , Nitrogênio , Solo , Verduras , Verduras/crescimento & desenvolvimento , Nitrogênio/metabolismo , Fertilizantes/análise , Solo/química , Agricultura/métodos , Óxido Nitroso/análise , Óxido Nitroso/metabolismoRESUMO
Pancreatic cancer (PC) is a highly malignant digestive tract tumor, with a dismal 5-year survival rate. Recently, cuproptosis was found to be copper-dependent cell death. This work aims to establish a cuproptosis-related lncRNA signature which could predict the prognosis of PC patients and help clinical decision-making. Firstly, cuproptosis-related lncRNAs were identified in the TCGA-PAAD database. Next, a cuproptosis-related lncRNA signature based on five lncRNAs was established. Besides, the ICGC cohort and our samples from 30 PC patients served as external validation groups to verify the predictive power of the risk signature. Then, the expression of CASC8 was verified in PC samples, scRNA-seq dataset CRA001160, and PC cell lines. The correlation between CASC8 and cuproptosis-related genes was validated by Real-Time PCR. Additionally, the roles of CASC8 in PC progression and immune microenvironment characterization were explored by loss-of-function assay. As showed in the results, the prognosis of patients with higher risk scores was prominently worse than that with lower risk scores. Real-Time PCR and single cell analysis suggested that CASC8 was highly expressed in pancreatic cancer and related to cuproptosis. Additionally, gene inhibition of CASC8 impacted the proliferation, apoptosis and migration of PC cells. Furthermore, CASC8 was demonstrated to impact the expression of CD274 and several chemokines, and serve as a key indicator in tumor immune microenvironment characterization. In conclusion, the cuproptosis-related lncRNA signature could provide valuable indications for the prognosis of PC patients, and CASC8 was a candidate biomarker for not only predicting the progression of PC patients but also their antitumor immune responses.
Assuntos
Neoplasias Pancreáticas , RNA Longo não Codificante , Humanos , RNA Longo não Codificante/genética , Apoptose/genética , Neoplasias Pancreáticas/genética , Morte Celular , Microambiente Tumoral/genética , Neoplasias PancreáticasRESUMO
Understanding metabolism is indispensable in unraveling the mechanistic basis of many physiological and pathological processes. However, in situ metabolic imaging tools are still lacking. Here we introduce a framework for mid-infrared (MIR) metabolic imaging by coupling the emerging high-information-throughput MIR microscopy with specifically designed IR-active vibrational probes. We present three categories of small vibrational tags including azide bond, 13C-edited carbonyl bond and deuterium-labeled probes to interrogate various metabolic activities in cells, small organisms and mice. Two MIR imaging platforms are implemented including broadband Fourier transform infrared microscopy and discrete frequency infrared microscopy with a newly incorporated spectral region (2,000-2,300 cm-1). Our technique is uniquely suited to metabolic imaging with high information throughput. In particular, we performed single-cell metabolic profiling including heterogeneity characterization, and large-area metabolic imaging at tissue or organ level with rich spectral information.
Assuntos
Análise de Célula Única/métodos , Espectrofotometria Infravermelho/métodos , Animais , Encéfalo/crescimento & desenvolvimento , Caenorhabditis elegans , Ensaios de Triagem em Larga Escala , Camundongos , Neoplasias , Microscopia Óptica não Linear , VibraçãoRESUMO
BACKGROUND: Aberrant ubiquitin-proteasome system (UPS) triggers various disorders of biological events and contributes to progression of tumorigenesis. The tripartite motif containing 22 (TRIM22) was demonstrated to participate in the progression of multiple malignancies. Nevertheless, the role of TRIM22 in melanoma is still indefinite. This project aims to investigate the biological function of TRIM22 in melanoma and provide novel therapeutical targets. METHODS: Bioinformatic algorithms were used to investigate prognostic significance of TRIM22. The in vitro or in vivo assays were used to explore the functions of TRIM22 in melanoma. The Co-Immunoprecipitation (Co-IP) and in vivo ubiquitination assays were used to assess regulations of TRIM22 on lysine acetyltransferase 2 A (KAT2A). The Chromatin immunoprecipitation (ChIP) assays and luciferase reporter assay were utilized to explore epigenetic regulations of KAT2A on Notch1. RESULTS: Here, we utilized the bioinformatic methods to confirm that TRIM22 is decreased in melanoma than normal tissues. Patients with low TRIM22 levels had shorter survival months than those with high TRIM22 levels. Targeting TRIM22 favors melanoma cell migration, proliferation, and tumor development in vitro and in vivo. Mechanistically, TRIM22 interacts with KAT2A and promotes its degradation in a ubiquitination-dependent manner. Melanoma cells with TRIM22 deficiency depended on KAT2A to enhance malignant progression, including proliferation, migration, and in vivo growth. KEGG analysis determined the positive correlation between KAT2A and Notch signaling. Chromatin Immunoprecipitation (ChIP) assays implicated that KAT2A directly binds to the promoter region of Notch1 and mediates the enrichment of H3K9ac modification. KAT2A activates Notch1 transcriptional levels and sustains the stemness feature of melanoma cells. Nocth1 inhibitor (IMR-1) effectively suppresses the growth of TRIM22low melanoma in vitro and in vivo but fails to inhibit TRIM22high melanoma. CONCLUSION: Together, our study illustrates the mechanism by which the TRIM22-KAT2A-Notch1 axis promotes melanoma progression, and demonstrates that KAT2A/Nocth1 confers an epigenetic vulnerability in TRIM22low melanoma.
Assuntos
Melanoma , Humanos , Linhagem Celular Tumoral , Melanoma/genética , Transdução de Sinais , Ubiquitinação , Epigênese Genética , Proteínas com Motivo Tripartido/genética , Proteínas com Motivo Tripartido/metabolismo , Proteínas Repressoras/genética , Antígenos de Histocompatibilidade Menor/metabolismo , Histona Acetiltransferases/genética , Histona Acetiltransferases/metabolismoRESUMO
Traumatic brain injury (TBI) can lead to neurodegenerative diseases such as Alzheimer's disease (AD) through mechanisms that remain incompletely characterized. Similar to AD, TBI models present with cellular metabolic alterations and modulated cleavage of amyloid precursor protein (APP). Specifically, AD and TBI tissues display increases in amyloid-ß as well as its precursor, the APP C-terminal fragment of 99 a.a. (C99). Our recent data in cell models of AD indicate that C99, due to its affinity for cholesterol, induces the formation of transient lipid raft domains in the ER known as mitochondria-associated endoplasmic reticulum (ER) membranes ("MAM" domains). The formation of these domains recruits and activates specific lipid metabolic enzymes that regulate cellular cholesterol trafficking and sphingolipid turnover. Increased C99 levels in AD cell models promote MAM formation and significantly modulate cellular lipid homeostasis. Here, these phenotypes were recapitulated in the controlled cortical impact (CCI) model of TBI in adult mice. Specifically, the injured cortex and hippocampus displayed significant increases in C99 and MAM activity, as measured by phospholipid synthesis, sphingomyelinase activity and cholesterol turnover. In addition, our cell type-specific lipidomics analyses revealed significant changes in microglial lipid composition that are consistent with the observed alterations in MAM-resident enzymes. Altogether, we propose that alterations in the regulation of MAM and relevant lipid metabolic pathways could contribute to the epidemiological connection between TBI and AD.
Assuntos
Doença de Alzheimer , Lesões Encefálicas Traumáticas , Camundongos , Animais , Doença de Alzheimer/metabolismo , Mitocôndrias/metabolismo , Regulação para Cima , Retículo Endoplasmático/metabolismo , Precursor de Proteína beta-Amiloide/metabolismo , Lesões Encefálicas Traumáticas/metabolismo , LipídeosRESUMO
BACKGROUND: Muscone is a chemical monomer derived from musk. Although many studies have confirmed the cardioprotective effects of muscone, the effects of muscone on cardiac hypertrophy and its potential mechanisms are unclear.The aim of the present study was to investigate the effect of muscone on angiotensin (Ang) II-induced cardiac hypertrophy. METHODS AND RESULTS: In the present study, we found for the first time that muscone exerted inhibitory effects on Ang II-induced cardiac hypertrophy and cardiac injury in mice. Cardiac function was analyzed by echocardiography measurement, and the degree of cardiac fibrosis was determined by the quantitative real-time polymerase chain reaction (qRT-PCR), Masson trichrome staining and western blot assay. Secondly, qRT-PCR experiment showed that muscone attenuated cardiac injury by reducing the secretion of pro-inflammatory cytokines and promoting the secretion of anti-inflammatory cytokines. Moreover, western blot analysis found that muscone exerted cardio-protective effects by inhibiting phosphorylation of key proteins in the STAT3, MAPK and TGF-ß/SMAD pathways. In addition, CCK-8 and determination of serum biochemical indexes showed that no significant toxicity or side effects of muscone on normal cells and organs. CONCLUSIONS: Muscone could attenuate Ang II-induced cardiac hypertrophy, in part, by inhibiting the STAT3, MAPK, and TGF-ß/SMAD signaling pathways.