Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
J Microsc ; 277(2): 79-92, 2020 02.
Artigo em Inglês | MEDLINE | ID: mdl-31997348

RESUMO

We present a comparison of the precision of different approaches for orientation imaging using electron backscatter diffraction (EBSD) in the scanning electron microscope. We have used EBSD to image the internal structure of WC grains, which contain features due to dislocations and subgrains. We compare the conventional, Hough-transform based orientation results from the EBSD system software with results of a high-precision orientation refinement using simulated pattern matching at the full available detector resolution of 640 × 480 pixels. Electron channelling contrast imaging (ECCI) is used to verify the correspondence of qualitative ECCI features with the quantitative orientation data from pattern matching. For the investigated sample, this leads to an estimated pattern matching sensitivity of about 0.5 mrad (0.03°) and a spatial feature resolution of about 100 nm. In order to investigate the alternative approach of postprocessing noisy orientation data, we analyse the effects of two different types of orientation filters. Using reference features in the high-precision pattern matching results for comparison, we find that denoising of orientation data can reduce the spatial resolution, and can lead to the creation of orientation artefacts for crystallographic features near the spatial and orientational resolution limits of EBSD.

2.
J Microsc ; 253(2): 93-108, 2014 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-24308722

RESUMO

The development of combined focused ion beam and scanning electron microscopes has enabled significant advances in the characterization of the 3-D structure of materials. The repeated removal of thin layers or slices with an ion beam and imaging or mapping the chemical or crystallographic structure of each slice enables a 3-D reconstruction from the images or maps. The accuracy of the reconstruction thus depends on the accuracy with which the slice thickness is measured and maintained throughout the process, and the alignment accuracy of the slices achieved during acquisition or by postacquisition corrections. A survey of papers published in this field suggests that the reconstruction accuracy is not often considered or reported. Using examples from examination of the 3-D structure of hardmetals, issues affecting the accuracy of slice thicknesses and image realignments are examined and illustrated and potential errors quantified by the use of fiducial markers and the expected isotropy of the hardmetal structure itself.

3.
Ultramicroscopy ; 213: 112977, 2020 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-32361281

RESUMO

Understanding defects and their roles in plastic deformation and device reliability is important for the development of a wide range of novel materials for the next generation of electronic and optoelectronic devices. We introduce the use of gaseous secondary electron detectors in a variable pressure scanning electron microscope for non-destructive imaging of extended defects using electron channelling contrast imaging. We demonstrate that all scattered electrons, including the secondary electrons, can provide diffraction contrast as long as the sample is positioned appropriately with respect to the incident electron beam. Extracting diffraction information through monitoring the modulation of the intensity of secondary electrons as a result of diffraction of the incident electron beam, opens up the possibility of performing low energy electron channelling contrast imaging to characterise low atomic weight and ultra-thin film materials. Our methodology can be adopted for large area, nanoscale structural characterisation of a wide range of crystalline materials including metals and semiconductors, and we illustrate this using the examples of aluminium nitride and gallium nitride. The capability of performing electron channelling contrast imaging, using the variable pressure mode, extends the application of this technique to insulators, which usually require conducting coatings on the sample surface for traditional scanning electron microscope based microstructural characterisation.

4.
Ultramicroscopy ; 184(Pt A): 242-251, 2018 01.
Artigo em Inglês | MEDLINE | ID: mdl-28992558

RESUMO

The use of a direct electron detector for the simple acquisition of 2D electron backscatter diffraction (EBSD) maps and 3D EBSD datasets with a static sample geometry has been demonstrated in a focused ion beam scanning electron microscope. The small size and flexible connection of the Medipix direct electron detector enabled the mounting of sample and detector on the same stage at the short working distance required for the FIB. Comparison of 3D EBSD datasets acquired by this means and with conventional phosphor based EBSD detectors requiring sample movement showed that the former method with a static sample gave improved slice registration. However, for this sample detector configuration, significant heating by the detector caused sample drift. This drift and ion beam reheating both necessitated the use of fiducial marks to maintain stability during data acquisition.

5.
Ultramicroscopy ; 139: 20-8, 2014 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-24531396

RESUMO

Three-dimensional reconstructions of microstructures produced by focused ion beam (FIB) milling usually assume a uniform slice thickness with flat and parallel surfaces. Measurement of the actual slice thickness and profile is difficult, and is often simply ignored. This paper reports the use of artificial 3D structures of known geometry to enable the full 3D profile of a sequence of slices produced by FIB to be measured for the first time. A transient period at the beginning of a milling process is observed in which the actual slice thickness varies by as much as ±50% from the target thickness (with significantly greater error near the base of the slice), before settling to a ±20% variation as the milling progresses. Although SEM images appear to show flat milled surfaces perpendicular to the top surface, the development of a curved, tapering milled surface is also observed. This profile is then maintained through the milling process with the bottom of the slice lagging the top by up to three slice thicknesses.


Assuntos
Imageamento Tridimensional/métodos , Íons/química , Microscopia Eletrônica de Varredura/métodos
6.
J Microsc ; 227(Pt 3): 298-308, 2007 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-17760627

RESUMO

The measurement of grain size by EBSD has been studied to enable representative quantification of the microstructure of hot deformed metal alloys with a wide grain size distributions. Variation in measured grain size as a function of EBSD step size and noise reduction techniques has been assessed. Increasing the EBSD step size from 5% to 20% of the approximate mean grain size results in a change in calculated arithmetic mean grain size of approximately 15% and standard noise reduction techniques can produce a further change in reported size of up to 20%. The distribution of measured grain size is found not to be log-normal, with a long tail of very small sizes in agreement with a computer simulation of linear intercept and areal grain size measurements through randomly oriented grains. Comparison of EBSD with optical measurements of grain size on the same samples shows that, because of the ability of EBSD to distinguish twins and resolve much smaller grains a difference of up to 50% in measured grain size results.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA