Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Science ; 312(5773): 554-6, 2006 Apr 28.
Artigo em Inglês | MEDLINE | ID: mdl-16645089

RESUMO

We simultaneously determined the physical structure and optical transition energies of individual single-walled carbon nanotubes by combining electron diffraction with Rayleigh scattering spectroscopy. These results test fundamental features of the excited electronic states of carbon nanotubes. We directly verified the systematic changes in transition energies of semiconducting nanotubes as a function of their chirality and observed predicted energy splittings of optical transitions in metallic nanotubes.

2.
Science ; 300(5620): 783-6, 2003 May 02.
Artigo em Inglês | MEDLINE | ID: mdl-12730598

RESUMO

Polarized infrared optical emission was observed from a carbon nanotube ambipolar field-effect transistor (FET). An effective forward-biased p-n junction, without chemical dopants, was created in the nanotube by appropriately biasing the nanotube device. Electrical measurements show that the observed optical emission originates from radiative recombination of electrons and holes that are simultaneously injected into the undoped nanotube. These observations are consistent with a nanotube FET model in which thin Schottky barriers form at the source and drain contacts. This arrangement is a novel optical recombination radiation source in which the electrons and holes are injected into a nearly field-free region. Sucha source may form the basis for ultrasmall integrated photonic devices.

3.
Opt Lett ; 24(15): 1059-61, 1999 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-18073940

RESUMO

We present a scheme for the determination of the vector nature of an electric field by optical second-harmonic generation. We demonstrate the technique by mapping the two-dimensional electric-field vector of a biased transmission line structure on silicon with a spatial resolution of ~10mum .

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA