RESUMO
Emerging evidence suggests that neural activity contributes to tumor initiation and its acquisition of metastatic properties. More specifically, it has been reported that the sympathetic nervous system regulates tumor angiogenesis, tumor growth, and metastasis. The function of the sympathetic nervous system in primary tumors has been gradually elucidated. However, its functions in pre-metastatic environments and/or the preparation of metastatic environments far from the primary sites are still unknown. To investigate the role of the sympathetic nervous system in pre-metastatic environments, we performed chemical sympathectomy using 6-OHDA in mice and observed a decrease in lung metastasis by attenuating the recruitment of myeloid-derived suppressor cells. Furthermore, we note that neuro-immune cell interactions could be observed in tumor-bearing mouse lungs in conjunction with the decreased expression of Sema3A. These data indicate that the sympathetic nervous system contributes to the preparation of pre-metastatic microenvironments in the lungs, which are mediated by neuro-immune cell interactions.
Assuntos
Neoplasias Pulmonares , Semaforina-3A , Animais , Pulmão/patologia , Neoplasias Pulmonares/patologia , Camundongos , Metástase Neoplásica/patologia , Oxidopamina , Sistema Nervoso Simpático , Microambiente TumoralRESUMO
Accumulating evidence indicates that an elevated ephrin-A1 expression is positively correlated with a worse prognosis in some cancers such as colon and liver cancer. The detailed mechanism of an elevated ephrin-A1 expression in a worse prognosis still remains to be fully elucidated. We previously reported that ADAM12-cleaved ephrin-A1 enhanced lung vascular permeability and thereby induced lung metastasis. However, it is still unclear whether or not cleaved forms of ephrin-A1 are derived from primary tumors and have biological activities. We identified the ADAM12-mediated cleavage site of ephrin-A1 by a Matrix-assisted laser desorption ionization mass spectrometry and checked levels of ephrin-A1 in the serum and the urine derived from the primary tumors by using a mouse model. We found elevated levels of tumor-derived ephrin-A1 in the serum and the urine in the tumor-bearing mice. Moreover, inhibition of ADAM-mediated cleavage of ephrin-A1 or antagonization of the EphA receptors resulted in a significant reduction of lung metastasis. The results suggest that tumor-derived ephrin-A1 is not only a potential biomarker to predict lung metastasis from the primary tumor highly expressing ephrin-A1 but also a therapeutic target of lung metastasis.
Assuntos
Proteína ADAM12/metabolismo , Carcinoma Pulmonar de Lewis/patologia , Efrina-A1/metabolismo , Receptor EphA2/metabolismo , Proteína ADAM12/genética , Animais , Permeabilidade Capilar , Carcinoma Pulmonar de Lewis/genética , Carcinoma Pulmonar de Lewis/metabolismo , Efrina-A1/genética , Células HEK293 , Humanos , Camundongos , Camundongos Endogâmicos C57BL , Metástase Neoplásica , Receptor EphA2/genética , Células Tumorais CultivadasRESUMO
The tumor-elicited inflammation is closely related to tumor microenvironment during tumor progression. S100A8, an endogenous ligand of Toll-like receptor 4 (TLR4), is known as a key molecule in the tumor microenvironment and premetastatic niche formation. We firstly generated a novel multivalent S100A8 competitive inhibitory peptide (divalent peptide3A5) against TLR4/MD-2, using the alanine scanning. Divalent peptide3A5 suppressed S100A8-mediated interleukin-8 and vascular endothelial growth factor production in human colorectal tumor SW480 cells. Using SW480-transplanted xenograft models, divalent peptide3A5 suppressed tumor progression in a dose-dependent manner. We demonstrated that combination therapy with divalent peptide3A5 and bevacizumab synergistically suppressed tumor growth in SW480 xenograft models. Using syngeneic mouse models, we found that divalent peptide3A5 improved the efficacy of anti-programmed death (PD)1 antibody, and lung metastasis. In addition, by using multivalent peptide library screening based on peptide3A5, we then isolated two more candidates; divalent ILVIK, and tetravalent ILVIK. Of note, multivalent ILVIK, but not monovalent ILVIK showed competitive inhibitory activity against TLR4/MD-2 complex, and anti-tumoral activity in SW480 xenograft models. As most tumor cells including SW480 cells also express TLR4, S100A8 inhibitory peptides would target both the tumor microenvironment and tumor cells. Thus, multivalent S100A8 inhibitory peptides would provide new pharmaceutical options for aggressive cancers.
Assuntos
Calgranulina B , Receptor 4 Toll-Like , Animais , Camundongos , Humanos , Calgranulina B/metabolismo , Fator A de Crescimento do Endotélio Vascular/metabolismo , Calgranulina A/metabolismo , Peptídeos/farmacologia , Peptídeos/metabolismoRESUMO
RNA in extracellular vesicles (EVs) are uptaken by cells, where they regulate fundamental cellular functions. EV-derived mRNA in recipient cells can be translated. However, it is still elusive whether "naked nonvesicular extracellular mRNA" (nex-mRNA) that are not packed in EVs can be uptaken by cells and, if so, whether they have any functions in recipient cells. Here, we show the entrance of nex-mRNA in the nucleus, where they exert a translation-independent function. Human nex-interleukin-1ß (IL1ß)-mRNA outside cells proved to be captured by RNA-binding zinc finger CCCH domain containing protein 12D (ZC3H12D)-expressing human natural killer (NK) cells. ZC3H12D recruited to the cell membrane binds to the 3'-untranslated region of nex-IL1ß-mRNA and transports it to the nucleus. The nex-IL1ß-mRNA in the NK cell nucleus upregulates antiapoptotic gene expression, migration activity, and interferon-γ production, leading to the killing of cancer cells and antimetastasis in mice. These results implicate the diverse actions of mRNA.
Assuntos
Núcleo Celular/metabolismo , Espaço Extracelular/metabolismo , RNA Mensageiro/metabolismo , Regiões 3' não Traduzidas , Animais , Antineoplásicos/farmacologia , Proteínas de Ciclo Celular/metabolismo , Linhagem Celular Tumoral , Membrana Celular/metabolismo , Meios de Cultivo Condicionados/metabolismo , Endorribonucleases/metabolismo , Humanos , Interleucina-1beta/genética , Interleucina-1beta/metabolismo , Células Matadoras Naturais/metabolismo , Camundongos , Ligação Proteica , RNA Mensageiro/genética , RNA Mensageiro/farmacologia , Proteínas de Ligação a RNA/metabolismoRESUMO
Chronic myeloid leukemia (CML) is believed to be caused by the tyrosine kinase p210BCR-ABL, which exhibits growth-promoting and anti-apoptotic activities. However, mechanisms that allow cell differentiation in CML still remain elusive. Here we established tetracycline (Tet)-regulatable p210BCR-ABL-expressing murine 32D myeloid progenitor (32D/TetOff-p210) cells to explore p210BCR-ABL-induced cell death and differentiation. Tet-regulatable overexpression of p210BCR-ABL induced cell death due to the activation of both caspase-1 and caspase-3, coincident with the differentiation from myeloid progenitors into CD11b+Ly6C+Ly6G+ cells with segmented nuclei, exemplified as granulocytic myeloid-derived suppressor cells (G-MDSC), and the ability to secrete IL-1ß, TNF-α, and S100A8/A9 into the culture supernatant. Treatment with imatinib almost completely abrogated all these phenotypes. Moreover, overexpression of a sensor of activated caspase-1 based on fluorescence resonance energy transfer (FRET) probe enabled us to detect activation of caspase-1 in a human CML cell line, K562. Furthermore, increased numbers of splenic G-MDSC associated with enhancement of S100A8/A9 production were observed in transgenic mice expressing p210BCR-ABL compared with that in wild-type mice. We also propose the novel mode of cell death in this 32D/TetOff-p210 system termed as myeloptosis.
RESUMO
Primary tumours establish metastases by interfering with distinct organs. In pre-metastatic organs, a tumour-friendly microenvironment supports metastatic cells and is prepared by many factors including tissue resident cells, bone marrow-derived cells and abundant fibrinogen depositions. However, other components are unclear. Here, we show that a third organ, originally regarded as a bystander, plays an important role in metastasis by directly affecting the pre-metastatic soil. In our model system, the liver participated in lung metastasis as a leucocyte supplier. These liver-derived leucocytes displayed liver-like characteristics and, thus, were designated hepato-entrained leucocytes (HepELs). HepELs had high expression levels of coagulation factor X (FX) and vitronectin (Vtn) and relocated to fibrinogen-rich hyperpermeable regions in pre-metastatic lungs; the cells then switched their expression from Vtn to thrombospondin, both of which were fibrinogen-binding proteins. Cell surface marker analysis revealed that HepELs contained B220+CD11c+NK1.1+ cells. In addition, an injection of B220+CD11c+NK1.1+ cells successfully eliminated fibrinogen depositions in pre-metastatic lungs via FX Moreover, B220+CD11c+NK1.1+ cells demonstrated anti-metastatic tumour ability with IFNγ induction. These findings indicate that liver-primed B220+CD11c+NK1.1+ cells suppress lung metastasis.
Assuntos
Células Matadoras Naturais/imunologia , Fígado/patologia , Neoplasias Pulmonares/patologia , Pulmão/patologia , Metástase Neoplásica , Lesões Pré-Cancerosas , Animais , Antígenos CD11 , Feminino , Fibrinogênio/metabolismo , Citometria de Fluxo , Humanos , Interferon gama/imunologia , Antígenos Comuns de Leucócito , Fígado/imunologia , Pulmão/imunologia , Neoplasias Pulmonares/imunologia , Neoplasias Pulmonares/secundário , Masculino , CamundongosRESUMO
Despite the high prevalence of intervertebral disc disease, little is known about changes in intervertebral disc cells and their regenerative potential with ageing and intervertebral disc degeneration. Here we identify populations of progenitor cells that are Tie2 positive (Tie2+) and disialoganglioside 2 positive (GD2+), in the nucleus pulposus from mice and humans. These cells form spheroid colonies that express type II collagen and aggrecan. They are clonally multipotent and differentiated into mesenchymal lineages and induced reorganization of nucleus pulposus tissue when transplanted into non-obese diabetic/severe combined immunodeficient mice. The frequency of Tie2+ cells in tissues from patients decreases markedly with age and degeneration of the intervertebral disc, suggesting exhaustion of their capacity for regeneration. However, progenitor cells (Tie2+GD2+) can be induced from their precursor cells (Tie2+GD2-) under simple culture conditions. Moreover, angiopoietin-1, a ligand of Tie2, is crucial for the survival of nucleus pulposus cells. Our results offer insights for regenerative therapy and a new diagnostic standard.