Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Sensors (Basel) ; 24(1)2024 Jan 04.
Artigo em Inglês | MEDLINE | ID: mdl-38203168

RESUMO

Fiber Bragg grating sensors (FBGs) are promising for structural health monitoring (SHM) of composite structures in space owing to their lightweight nature, resilience to harsh environments, and immunity to electromagnetic interference. In this paper, we investigated the influence of low Earth orbit (LEO) conditions on the integrity of composite structures with embedded optical fiber sensors, specifically FBGs. The LEO conditions were simulated by subjecting carbon fiber-reinforced polymer (CFRP) coupons to 10 cycles of thermal conditioning in a vacuum (TVac). Coupons with embedded optical fibers (OFs) or capillaries were compared with reference coupons without embedded OFs or capillaries. Embedded capillaries were necessary to create in situ temperature sensors. Tensile and compression tests were performed on these coupons, and the interlaminar shear strength was determined to assess the influence of TVac conditioning on the integrity of the composite. Additionally, a visual inspection of the cross-sections was conducted. The impact on the proper functioning of the embedded FBGs was tested by comparing the reflection spectra before and after TVac conditioning and by performing tensile tests in which the strain measured using the embedded FBGs was compared with the output of reference strain sensors applied after TVac conditioning. The measured strain of the embedded FBGs showed excellent agreement with the reference sensors, and the reflection spectra did not exhibit any significant degradation. The results of the mechanical testing and visual inspection revealed no degradation of the structural integrity when comparing TVac-conditioned coupons with non-TVac-conditioned coupons of the same type. Consequently, it was concluded that TVac conditioning does not influence the functionality of the embedded FBGs or the structural integrity of the composite itself. Although in this paper FBG sensors were tested, the results can be extrapolated to other sensing techniques based on optical fibers.

2.
Sensors (Basel) ; 23(18)2023 Sep 08.
Artigo em Inglês | MEDLINE | ID: mdl-37765822

RESUMO

The use of composite materials has seen widespread adoption in modern aerospace industry. This has been facilitated due to their favourable mechanical characteristics, namely, low weight and high stiffness and strength. For broader implementation of those materials though, the out-of-autoclave production processes have to be optimized, to allow for higher reliability of the parts produced as well as cost reduction and improved production speed. This optimization can be achieved by monitoring and controlling resin filling and curing cycles. Photonic Integrated Circuits (PICs), and, in particular, Silicon Photonics, owing to their fast response, small size, ability to operate at higher temperatures, immunity to electromagnetic interference, and compatibility with CMOS fabrication techniques, can offer sensing solutions fulfilling the requirements for composite material production using carbon fibres. In this paper, we demonstrate a passive optical temperature sensor, based on a 220 nm height Silicon-on-Insulator platform, embedded in a composite tool used for producing RTM-6 composite parts of high quality (for use in the aerospace industry). The design methodology of the photonic circuit as well as the experimental results and comparison with the industry standard thermocouples during a thermal cycling of the tool are presented. The optical sensor exhibits high sensitivity (85 pm/°C), high linearity (R2 = 0.944), and is compatible with the RTM-6 production process, operating up to 180 °C.

3.
Opt Express ; 29(5): 7601-7615, 2021 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-33726258

RESUMO

To increase the manufacturing throughput and lower the cost of silicon photonics packaging, an alignment tolerant approach is required to simplify the process of fiber-to-chip coupling. Here, we demonstrate an alignment-tolerant expanded beam backside coupling interface (in the O-band) for silicon photonics by monolithically integrating microlenses on the backside of the chip. After expanding the diffracted optical beam from a TE-mode grating through the bulk silicon substrate, the beam is collimated with the aid of microlenses resulting in an increased coupling tolerance to lateral and longitudinal misalignment. With an expanded beam diameter of 32 µm, a ±7 µm lateral and a ±0.6° angular fiber-to-microlens 1-dB alignment tolerance is demonstrated at the wavelength of 1310 nm. Also, a large 300 µm longitudinal alignment tolerance with a 0.2 dB drop in coupling efficiency is obtained when the collimated beam from the microlens is coupled into a thermally expanded core single-mode fiber.

4.
Opt Express ; 28(8): 11175-11190, 2020 Apr 13.
Artigo em Inglês | MEDLINE | ID: mdl-32403634

RESUMO

In a waveguide-type display for augmented reality, the image is injected in the waveguide and extracted in front of the eye appearing superimposed on the real-world scene. An elegant and compact way of coupling these images in and out is by using blazed gratings, which can achieve high diffraction efficiencies. We report the design of blazed gratings for green light (λ = 543 nm) and a diffraction angle of 43°. The blazed gratings with a pitch of 508 nm and a fill factor of 0.66 are fabricated using grayscale electron beam lithography. We outline the subsequent replication in a polymer waveguide material with ultraviolet nanoimprint lithography and confirm a throughput efficiency of 17.4%. We finally show the in- and outcoupling of an image through two blazed gratings appearing sharp and non-distorted in the environment.

5.
Opt Express ; 28(18): 27013-27027, 2020 Aug 31.
Artigo em Inglês | MEDLINE | ID: mdl-32906963

RESUMO

A novel platform based on evanescent wave sensing in the 6.5 to 7.5 µm wavelength range is presented with the example of toluene detection in an aqueous solution. The overall sensing platform consists of a germanium-on-silicon waveguide with a functionalized mesoporous silica cladding and integrated microlenses for alignment-tolerant back-side optical interfacing with a tunable laser spectrometer. Hydrophobic functionalization of the mesoporous cladding allows enrichment of apolar analyte molecules and prevents strong interaction of water with the evanescent wave. The sensing performance was evaluated for aqueous toluene standards resulting in a limit of detection of 7 ppm. Recorded adsorption/desorption profiles followed Freundlich adsorption isotherms with rapid equilibration and resulting sensor response times of a few seconds. This indicates that continuous monitoring of contaminants in water is possible. A significant increase in LOD can be expected by likely improvements to the spectrometer noise floor which, expressed as a relative standard deviation of 100% lines, is currently in the range of 10-2A.U.

6.
Sensors (Basel) ; 20(11)2020 Jun 05.
Artigo em Inglês | MEDLINE | ID: mdl-32517127

RESUMO

Optical sensors based on guided mode resonance (GMR) realized in polymers are promising candidates for sensitive and cost effective strain sensors. The benefit of GMR grating sensors is the non-contact, easy optical read-out with large working distance, avoiding costly alignment and packaging procedures. The GMR gratings with resonance around 850-900 nm are fabricated using electron beam lithography and replicated using a soft stamp based imprinting technique on 175 µ m-thick foils to make them suitable for optical strain sensing. For the strain measurements, foils are realized with both GMR gratings and waveguides with Bragg gratings. The latter are used as reference sensors and allow extracting the absolute strain sensitivity of the GMR sensor foils. Following this method, it is shown that GMR gratings have an absolute strain sensitivity of 1.02 ± 0.05 p m / µ ϵ at 870 nm.

7.
Opt Express ; 26(8): 9584-9594, 2018 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-29715907

RESUMO

This paper reports on the design, fabrication and characterization of an all-organic photonic integrated circuit working as a switching polarizer for visible light (630nm), combining organic waveguides and liquid crystals that can be electrically driven. The device was made in commercially available epoxy by laser direct writing lithography. A device with a 2dB loss and a 20dB extinction ratio for both polarizations, was simulated; the manufactured devices proved the working principle of the design. The results have led to the design of a switching polarization splitter, in which a careful choice of waveguide material and liquid crystal can lead to devices working on a wide range of wavelengths.

8.
Sensors (Basel) ; 18(8)2018 Aug 18.
Artigo em Inglês | MEDLINE | ID: mdl-30126194

RESUMO

Thin and flexible sensor foils are very suitable for unobtrusive integration with mechanical structures and allow monitoring for example strain and temperature while minimally interfering with the operation of those structures. Electrical strain gages have long been used for this purpose, but optical strain sensors based on Bragg gratings are gaining importance because of their improved accuracy, insusceptibility to electromagnetic interference, and multiplexing capability, thereby drastically reducing the amount of interconnection cables required. This paper reports on thin polymer sensor foils that can be used as photonic strain gage or temperature sensors, using several Bragg grating sensors multiplexed in a single polymer waveguide. Compared to commercially available optical fibers with Bragg grating sensors, our planar approach allows fabricating multiple, closely spaced sensors in well-defined directions in the same plane realizing photonic strain gage rosettes. While most of the reported Bragg grating sensors operate around a wavelength of 1550 nm, the sensors in the current paper operate around a wavelength of 850 nm, where the material losses are the lowest. This was accomplished by imprinting gratings with pitches 280 nm, 285 nm, and 290 nm at the core-cladding interface of an imprinted single mode waveguide with cross-sectional dimensions 3 × 3 µm². We show that it is possible to realize high-quality imprinted single mode waveguides, with gratings, having only a very thin residual layer which is important to limit bend losses or cross-talk with neighboring waveguides. The strain and temperature sensitivity of the Bragg grating sensors was found to be 0.85 pm/µÎµ and -150 pm/°C, respectively. These values correspond well with those of previously reported sensors based on the same materials but operating around 1550 nm, taking into account that sensitivity scales with the wavelength.

9.
Opt Express ; 25(3): 1732-1745, 2017 Feb 06.
Artigo em Inglês | MEDLINE | ID: mdl-29519027

RESUMO

Light sheet microscopy is a relatively new form of fluorescence microscopy that has been receiving a lot of attention recently. The strong points of the technique, such as high signal to noise ratio and its reduced photodamage of fluorescently labelled samples, come from its unique feature to illuminate only a thin plane in the sample that coincides with the focal plane of the detection lens. Typically this requires two closely positioned perpendicular objective lenses, one for detection and one for illumination. Apart from the fact that this special configuration of objective lenses is incompatible with standard microscope bodies, it is particularly problematic for high-resolution lenses which typically have a short working distance. To address these issues we developed sample holders with an integrated micromirror to perform single lens light sheet microscopy, also known as single objective single plane illumination microscopy (SoSPIM). The first design is based on a wet-etched silicon substrate, the second on a microfabricated polished polymer plug. We achieved an on-chip light sheet thickness of 2.3 µm (FWHM) at 638 nm with the polymer micromirror and of 1.7 µm (FWHM) at 638 nm with the silicon micromirror, comparable to reported light sheet thicknesses obtained on dedicated light sheet microscopes. A marked contrast improvement was obtained with both sample holders as compared to classic epi-fluorescence microscopy. In order to evaluate whether this technology could be made available on a larger scale, in a next step we evaluated the optical quality of inexpensive replicas from both types of master molds. We found that replicas from the polished polymer based mold have an optical quality close to that of the master component, while replicas from the silicon based mold were of slightly lower but still acceptable quality. The suitability of the replicated polymer based sample holder for single-lens light sheet microscopy was finally demonstrated by imaging breast cancer spheroids.

10.
Opt Express ; 22(4): 4168-79, 2014 Feb 24.
Artigo em Inglês | MEDLINE | ID: mdl-24663741

RESUMO

We introduce the concept of mechanically stretchable optical waveguides. The technology to fabricate these waveguides is based on a cost-efficient replication method, employing commercially available polydimethylsiloxane (PDMS) materials. Furthermore, VCSELs (λ = 850 nm) and photodiodes, embedded in a flexible package, were integrated with the waveguides to obtain a truly bendable, stretchable and mechanically deformable optical link. Since these sources and detectors were integrated, it was possible to determine the influence of bending and stretching on the waveguide performance.

11.
ACS Appl Opt Mater ; 2(9): 1926-1932, 2024 Sep 27.
Artigo em Inglês | MEDLINE | ID: mdl-39360237

RESUMO

Alignment tolerant coupling interfaces are an important feat for mid-IR waveguides when moving closer to real-world sensing applications, as they allow for an easy and fast replacement of waveguides. In this work, we demonstrate the alignment tolerant behavior of a germanium-on-silicon trenched waveguide platform with monolithically integrated microlenses using backside coupling of an expanded beam for evanescent field sensing between 6.5 and 7.5 µm. The chip with a propagation loss of approximately 5 dB/cm was mounted and aligned, using active alignment, in a sample holder that could be moved in all three dimensions to induce misalignments with a precision of the manual actuator of 1.3 µm. Using this setup, the in-plane 1 dB alignment tolerances were measured to be ±16 µm, while the 1 dB alignment tolerances in the longitudinal direction were found to be larger than ±150 µm. Without the addition of the microlenses, we expect an in-plane 1 dB alignment tolerance of ±3 µm based on simulations. Additionally, it could be demonstrated that the integration of the microlenses significantly improves the stability of the broadband grating couplers in regard to misalignment-induced intensity changes in the obtained transmission spectra.

12.
J Neural Eng ; 18(6)2021 12 24.
Artigo em Inglês | MEDLINE | ID: mdl-34951406

RESUMO

Objective.The blue light-activated inhibitory opsin, stGtACR2, is gaining prominence as a neuromodulatory tool due its ability to shunt-inhibit neurons and is being frequently used inin vivoexperimentation. However, experiments involving stGtACR2 use longer durations of blue light pulses, which inadvertently heat up the local brain tissue and confound experimental results. Therefore, the heating effects of illumination parameters used forin vivooptogenetic inhibition must be evaluated.Approach.To assess blue light (473 nm)-induced heating of the brain, we used a computational model as well as direct temperature measurements using a fiber Bragg grating (FBG). The effects of different light power densities (LPDs) and pulse durations on evoked potentials (EP) recorded from dentate gyrus were assessed. For opsin-negative rats, LPDs between 127 and 636 mW mm-2and pulse durations between 20 and 5120 ms were tested while for stGtACR2 expressing rats, LPD of 127 mW mm-2and pulse durations between 20 and 640 ms were tested.Main results.Increasing LPDs and pulse durations logarithmically increased the peak temperature and significantly decreased the population spike (PS) amplitude and latencies of EPs. For a pulse duration of 5120 ms, the tissue temperature increased by 0.6 °C-3.4 °C. All tested LPDs decreased the PS amplitude in opsin-negative rats, but 127 mW mm-2had comparatively minimal effects and a significant effect of increasing light pulse duration was seen from 320 ms and beyond. This corresponded with an average temperature increase of 0.2 °C-1.1 °C at the recorded site. Compared to opsin-negative rats, illumination in stGtACR2-expressing rats resulted in much greater inhibition of EPs.Significance.Our study demonstrates that light-induced heating of the brain can be accurately measuredin vivousing FBG sensors. Such light-induced heating alone can affect neuronal excitability. Useful neuromodulation by the activation of stGtACR2 is still possible while minimizing thermal effects.


Assuntos
Hipocampo , Iluminação , Opsinas , Optogenética , Estimulação Luminosa , Temperatura , Animais , Hipocampo/fisiologia , Opsinas/metabolismo , Optogenética/métodos , Ratos , Fatores de Tempo
13.
Micromachines (Basel) ; 12(1)2020 Dec 31.
Artigo em Inglês | MEDLINE | ID: mdl-33396287

RESUMO

Epilepsy is a chronic, neurological disorder affecting millions of people every year. The current available pharmacological and surgical treatments are lacking in overall efficacy and cause side-effects like cognitive impairment, depression, tremor, abnormal liver and kidney function. In recent years, the application of optogenetic implants have shown promise to target aberrant neuronal circuits in epilepsy with the advantage of both high spatial and temporal resolution and high cell-specificity, a feature that could tackle both the efficacy and side-effect problems in epilepsy treatment. Optrodes consist of electrodes to record local field potentials and an optical component to modulate neurons via activation of opsin expressed by these neurons. The goal of optogenetics in epilepsy is to interrupt seizure activity in its earliest state, providing a so-called closed-loop therapeutic intervention. The chronic implantation in vivo poses specific demands for the engineering of therapeutic optrodes. Enzymatic degradation and glial encapsulation of implants may compromise long-term recording and sufficient illumination of the opsin-expressing neural tissue. Engineering efforts for optimal optrode design have to be directed towards limitation of the foreign body reaction by reducing the implant's elastic modulus and overall size, while still providing stable long-term recording and large-area illumination, and guaranteeing successful intracerebral implantation. This paper presents an overview of the challenges and recent advances in the field of electrode design, neural-tissue illumination, and neural-probe implantation, with the goal of identifying a suitable candidate to be incorporated in a therapeutic approach for long-term treatment of epilepsy patients.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA