Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Ano de publicação
Intervalo de ano de publicação
1.
Mol Genet Metab ; 142(1): 108345, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38387306

RESUMO

Mutations in MMACHC cause cobalamin C disease (cblC, OMIM 277400), the commonest inborn error of vitamin B12 metabolism. In cblC, deficient activation of cobalamin results in methylcobalamin and adenosylcobalamin deficiency, elevating methylmalonic acid (MMA) and total plasma homocysteine (tHcy). We retrospectively reviewed the medical files of seven cblC patients: three compound heterozygotes for the MMACHC (NM_015506.3) missense variant c.158T>C p.(Leu53Pro) in trans with the common pathogenic mutation c.271dupA (p.(Arg91Lysfs*14), "compounds"), and four c.271dupA homozygotes ("homozygotes"). Compounds receiving hydroxocobalamin intramuscular injection monotherapy had age-appropriate psychomotor performance and normal ophthalmological examinations. In contrast, c.271dupA homozygotes showed marked psychomotor retardation, retinopathy and feeding problems despite penta-therapy (hydroxocobalamin, betaine, folinic acid, l-carnitine and acetylsalicylic acid). Pretreatment levels of plasma and urine MMA and tHcy were higher in c.271dupA homozygotes than in compounds. Under treatment, levels of the compounds approached or entered the reference range but not those of c.271dupA homozygotes (tHcy: compounds 9.8-32.9 µM, homozygotes 41.6-106.8 (normal (N) < 14); plasma MMA: compounds 0.14-0.81 µM, homozygotes, 10.4-61 (N < 0.4); urine MMA: compounds 1.75-48 mmol/mol creatinine, homozygotes 143-493 (N < 10)). Patient skin fibroblasts all had low cobalamin uptake, but this was milder in compound cells. Also, the distribution pattern of cobalamin species was qualitatively different between cells from compounds and from homozygotes. Compared to the classic cblC phenotype presented by c.271dupA homozygous patients, c.[158T>C];[271dupA] compounds had mild clinical and biochemical phenotypes and responded strikingly to hydroxocobalamin monotherapy.


Assuntos
Proteínas de Transporte , Hidroxocobalamina , Fenótipo , Deficiência de Vitamina B 12 , Vitamina B 12 , Humanos , Hidroxocobalamina/administração & dosagem , Hidroxocobalamina/uso terapêutico , Masculino , Feminino , Deficiência de Vitamina B 12/genética , Deficiência de Vitamina B 12/tratamento farmacológico , Deficiência de Vitamina B 12/sangue , Vitamina B 12/sangue , Pré-Escolar , Proteínas de Transporte/genética , Estudos Retrospectivos , Oxirredutases/genética , Criança , Ácido Metilmalônico/sangue , Homocistinúria/tratamento farmacológico , Homocistinúria/genética , Lactente , Mutação de Sentido Incorreto , Homozigoto , Heterozigoto , Homocisteína/sangue , Adolescente , Erros Inatos do Metabolismo dos Aminoácidos/genética , Erros Inatos do Metabolismo dos Aminoácidos/tratamento farmacológico , Erros Inatos do Metabolismo dos Aminoácidos/sangue , Adulto
2.
Mol Genet Metab Rep ; 39: 101073, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38550975

RESUMO

An 11-month-old girl with severe acidosis, lethargy and vomiting, was diagnosed with holocarboxylase synthetase deficiency. She received biotin and was stable until age 8 years when vomiting, severe acidosis, hypoglycemia, and hyperammonemia developed. Management with intravenous glucose aiming to stimulate anabolism led to hyperglycemic ketoacidosis. Insulin therapy rapidly corrected biochemical parameters, and clinical status improved. We propose that secondary Krebs cycle disturbances affecting pancreatic beta cells impaired glucose-stimulated insulin secretion, resulting in insulinopenia.

3.
J. inborn errors metab. screen ; 6: e180001, 2018. tab, graf
Artigo em Inglês | LILACS-Express | LILACS | ID: biblio-1090960

RESUMO

Abstract Major progress occurred in understanding inborn errors of ketone body transport and metabolism between the International Congresses on Inborn Errors of Metabolism in Barcelona (2013) and Rio de Janeiro (2017). These conditions impair either ketogenesis (presenting as episodes of hypoketotic hypoglycemia) or ketolysis (presenting as ketoacidotic episodes); for both groups, immediate intravenous glucose administration is the most critical and (mHGGCS, HMGCS2) effective treatment measure. Ketogenesis Deficiencies: New biomarkers were described for mitochondrial 3-hydroxy-3-methylglutaryl-CoA synthase (mHGGCS, HMGCS2) deficiency. New patient series refined clinical knowledge of 3-hydroxy-3-methylglutaryl-CoA lyase (HGGCL, HMGCL) deficiency. Although affected humans have not been described, two animal model phenotypes are pertinent: zebrafish deficient in monocarboxylate transporter 7 (MCT7, slc16a6) (decreased ketone body exit from hepatocytes) or mice lacking D-3-hydroxy-n-butyrate dehydrogenase (BDH1, BDH1) (isolated hyperacetoacetatemia; fatty liver). Ketolysis Deficiencies: Monocarboxylate transporter 1 (MCT1, SLC16A1) deficiency is a newly described defect of ketone body transport, joining deficiencies of succinyl-CoA:3-oxoacid CoA transferase (SCOT, OXCT1) and methylacetoacetyl-CoA thiolase (MAT, ACAT1). Some heterozygotes for MCT1 or SCOT deficiency develop ketoacidosis.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA