RESUMO
Psoriasis, a prevalent inflammatory skin condition impacting millions globally, continues to pose treatment challenges, despite the availability of multiple therapies. This underscores the demand for innovative treatments. Mesenchymal stem cells (MSCs) have emerged as a promising therapeutic option due to their capacity to modulate the immune system and facilitate tissue healing. Recent research indicates that MSCs don't just work through direct cell-to-cell interactions but also release extracellular vesicles (EVs), containing various bioactive substances like proteins, lipids, and nucleic acids. This article explores our current knowledge of psoriasis's origins and the potential utilization of MSCs and their EVs, particularly exosomes, in managing the condition. Additionally, we delve into how MSCs and EVs function in therapy, including their roles in regulating immune responses and promoting tissue repair. Lastly, we discuss the obstacles and opportunities associated with translating MSC-based treatments for psoriasis into clinical practice.
Assuntos
Exossomos , Transplante de Células-Tronco Mesenquimais , Células-Tronco Mesenquimais , Psoríase , Psoríase/terapia , Humanos , Células-Tronco Mesenquimais/imunologia , Células-Tronco Mesenquimais/metabolismo , Transplante de Células-Tronco Mesenquimais/métodos , Exossomos/metabolismo , Animais , Vesículas Extracelulares/metabolismoRESUMO
Colorectal cancer (CRC) is one of the main causes of cancer-related deaths. However, the surgical control of the CRC progression is difficult, and in most cases, the metastasis leads to cancer-related mortality. Mesenchymal stem/stromal cells (MSCs) with potential translational applications in regenerative medicine have been widely researched for several years. MSCs could affect tumor development through secreting exosomes. The beneficial properties of stem cells are attributed to their cell-cell interactions as well as the secretion of paracrine factors in the tissue microenvironment. For several years, exosomes have been used as a cell-free therapy to regulate the fate of tumor cells in a tumor microenvironment. This review discusses the recent advances and current understanding of assessing MSC-derived exosomes for possible cell-free therapy in CRC.
Assuntos
Neoplasias Colorretais , Exossomos , Vesículas Extracelulares , Células-Tronco Mesenquimais , Humanos , Comunicação Celular , Microambiente TumoralRESUMO
Immunotherapy has emerged as a revolutionary cancer treatment, particularly with the introduction of immune checkpoint inhibitors (ICIs). ICIs target specific proteins that restrain the immune system from attacking cancer cells. Prominent examples of checkpoint proteins that ICIs block include PD-1, PD-L1, and CTLA-4. The success of PD-1/L1 and CTLA-4 blockade has prompted further research on other inhibitory mechanisms that could aid in the treatment of cancer. One such mechanism is the BTLA/HVEM checkpoint, which regulates immune responses in a similar manner to CTLA-4 and PD-1. BTLA, a member of the Ig superfamily, binds to HVEM, a member of the TNF receptor superfamily. While BTLA is essential for maintaining immunological self-tolerance and preventing autoimmune diseases, overexpression of BTLA and HVEM has been observed in various malignancies such as lung, ovarian, glioblastoma, gastric cancer, and non-Hodgkin's lymphoma. The function of the BTLA/HVEM checkpoint in various malignancies has been extensively studied, revealing its significant role in immunotherapy for cancer. This review study aims to explain the BTLA/HVEM checkpoint and its functions in different types of cancers. In conclusion, the development of new immunotherapies such as ICIs has revolutionized cancer treatment. The discovery of the BTLA/HVEM checkpoint and its role in various malignancies provides opportunities for advancing cancer treatment through immunotherapy.
RESUMO
MicroRNAs, a collection of short noncoding RNAs, are promising biomarkers for identifying cancer in its early stages and tracking the effectiveness of treatment. This is due to their critical role in regulating gene expression and other vital biological functions via cell-level epigenetic mechanisms. This review brings together data on the molecular and clinical effects of miR-765 on different types of cancer. Significant variation in miR-765 levels has been observed in a variety of cancer types, suggesting that it could have an oncogene or tumor suppressor role. A number of pathways, including PLP2/Notch, VEGFA/Akt1, PDX1, KLK4, RUNX2, DPF3, EMP3, APE1, ERK/EMT axis, and others, are impacted by the inclusion of miR-765 in their analysis. MiR-765 is an essential biomarker that shows promise as a diagnostic tool for various types of cancer. The latest research has identified them as reliable predictive markers for detecting tumor development at an early stage. Based on our study, miR-765 shows promising potential as a biomarker for prognosis in multiple types of cancer. Specifically, we suggest that miR-765 could be an early detection marker for tumor development, progression, and metastasis.
Assuntos
Biomarcadores Tumorais , Regulação Neoplásica da Expressão Gênica , MicroRNAs , Neoplasias , Humanos , MicroRNAs/genética , Neoplasias/genética , Neoplasias/diagnóstico , Biomarcadores Tumorais/genética , Animais , PrognósticoRESUMO
Mesenchymal stem cells (MSCs) originating from the umbilical cord (UC) or Wharton's jelly (WJ) have attracted substantial interest due to their potential to augment therapeutic approaches for a wide range of disorders. These cells demonstrate a wide range of capabilities in the process of differentiating into a multitude of cell types. Additionally, they possess a significant capacity for proliferation and are conveniently accessible. Furthermore, they possess a status of being immune-privileged, exhibit minimal tumorigenic characteristics, and raise minimal ethical concerns. Consequently, they are well-suited candidates for tissue regeneration and the treatment of diseases. Additionally, UC-derived MSCs offer a substantial yield compared to other sources. The therapeutic effects of these MSCs are closely associated with the release of nanosized extracellular vesicles (EVs), including exosomes and microvesicles (MVs), containing lipids, microRNAs, and proteins that facilitate intercellular communication. Due to their reduced tumorigenic and immunogenic characteristics, in addition to their convenient manipulability, EVs have arisen as a viable alternative for the management of disorders. The favorable characteristics of UC-MSCs or WJ-MSCs and their EVs have generated significant attention in clinical investigations encompassing diverse pathologies. Therefore, we present a review encompassing current preclinical and clinical investigations, examining the implications of UC-MSCs in diverse diseases, including those affecting bone, cartilage, skin, liver, kidney, neural, lung, cardiovascular, muscle, and retinal tissues, as well as conditions like cancer, diabetes, sepsis, and others.
Assuntos
Vesículas Extracelulares , Transplante de Células-Tronco Mesenquimais , Células-Tronco Mesenquimais , Cordão Umbilical , Geleia de Wharton , Humanos , Células-Tronco Mesenquimais/metabolismo , Células-Tronco Mesenquimais/citologia , Cordão Umbilical/citologia , Geleia de Wharton/citologia , Vesículas Extracelulares/metabolismo , AnimaisRESUMO
Interleukin-6 (IL-6), a pro-inflammatory cytokine, plays a crucial role in host immune defense and acute stress responses. Moreover, it modulates various cellular processes, including proliferation, apoptosis, angiogenesis, and differentiation. These effects are facilitated by various signaling pathways, particularly the signal transducer and activator of transcription 3 (STAT3) and Janus kinase 2 (JAK2). However, excessive IL-6 production and dysregulated signaling are associated with various cancers, promoting tumorigenesis by influencing all cancer hallmarks, such as apoptosis, survival, proliferation, angiogenesis, invasiveness, metastasis, and notably, metabolism. Emerging evidence indicates that selective inhibition of the IL-6 signaling pathway yields therapeutic benefits across diverse malignancies, such as multiple myeloma, prostate, colorectal, renal, ovarian, and lung cancers. Targeting key components of IL-6 signaling, such as IL-6Rs, gp130, STAT3, and JAK via monoclonal antibodies (mAbs) or small molecules, is a heavily researched approach in preclinical cancer studies. The purpose of this study is to offer an overview of the role of IL-6 and its signaling pathway in various cancer types. Furthermore, we discussed current preclinical and clinical studies focusing on targeting IL-6 signaling as a therapeutic strategy for various types of cancer.
Assuntos
Interleucina-6 , Neoplasias , Transdução de Sinais , Humanos , Interleucina-6/metabolismo , Interleucina-6/antagonistas & inibidores , Neoplasias/metabolismo , Neoplasias/imunologia , Neoplasias/patologia , Neoplasias/tratamento farmacológico , Animais , Progressão da Doença , Fator de Transcrição STAT3/metabolismo , Antineoplásicos/uso terapêuticoRESUMO
Mesenchymal stem/stromal cells (MSCs) are acknowledged for their remarkable ability to undergo differentiation into various cell types. In addition, they exhibit anti-tumor characteristics, prompting endeavors to modify MSCs for employment in cancer therapies. On the contrary, it is imperative to recognize that MSCs have been extensively linked to pathways that facilitate the advancement of tumors. Numerous research studies have sought to modify MSCs for clinical application; however, the outcomes have been ambiguous, potentially due to the heterogeneity of MSC populations. Furthermore, the conflicting roles of MSCs in suppressing and promoting tumor growth present a challenge to the appropriateness of their use in anti-cancer therapies. Currently, there exists a lack of comprehensive comprehension concerning the anti-tumor and pro-tumor characteristics of MSCs for gastric cancer (GC). This article discusses the influence of MSCs on GC, the underlying mechanisms, the origins of MSCs, and their effects. This review article also elucidates how MSCs exhibit dual characteristics of promoting and inhibiting tumor growth. Hence, it is of utmost importance that clinical inquiries aimed at utilizing MSCs as a therapeutic intervention for cancer consider the potentiality of MSCs to accelerate the progression of GC. It is crucial to exercise caution throughout the process of developing MSC-based cellular therapies to enhance their anti-cancer attributes while simultaneously eliminating their tumor-promoting impacts.
Assuntos
Transplante de Células-Tronco Mesenquimais , Células-Tronco Mesenquimais , Neoplasias Gástricas , Neoplasias Gástricas/patologia , Neoplasias Gástricas/terapia , Humanos , Transplante de Células-Tronco Mesenquimais/métodos , Animais , Diferenciação Celular , Microambiente TumoralRESUMO
AIM: This study aimed to find the effect of hypothyroidism in men on metabolism and bone mineral density. METHOD: The study included a patients group of 90 men suffering from hypothyroidism and 120 healthy subjects as a control group. The study comprised the estimation of the concentration of Blood free triiodothyronine (FT3), free thyroid hormone (FT4), thyroid stimulating hormone (TSH), bone resorption index type I collagen C-terminal peptide (CTX-1), the serum calcium (Ca2+), serum phosphorus (Pi3+), the bone mineral density of the lumbar spine and femoral neck. RESULTS: In the hypothyroidism men group: (1) the bone mass was lower than the control group with significant differences, (2) the bone resorption index CTX-1 was significantly higher than that in the control group and calcium and phosphorus were not different from those in healthy control subjects, and (3) TSH was positively correlated with CTX-1. Male TSH and CTX-1 levels were positively correlated. CONCLUSIONS: There is bone loss in men with hypothyroidism, which may be related to increased bone resorption.