Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Assunto da revista
Intervalo de ano de publicação
1.
Sensors (Basel) ; 24(9)2024 Apr 25.
Artigo em Inglês | MEDLINE | ID: mdl-38732840

RESUMO

This paper introduces a novel approach to measure deformations in geomaterials using the recently developed 'Smart Pebble' sensors. Smart Pebbles were included in triaxial test specimens of unbound aggregates stabilized with geogrids. The sensors are equipped with an aggregate particle/position tracking algorithm that can manage uncertainty arising due to signal noise and random walk effects. Two Smart Pebbles were placed in each test specimen, one at specimen's mid-height, where a geogrid was installed in the mechanically stabilized specimen, and one towards the top of the specimen. Even with simple raw data processing, the trends on linear vertical acceleration indicated the ability of Smart Pebbles to assess the geomaterial configuration and applied stress states. Employing a Kalman filter-based algorithm, the Smart Pebble position coordinates were tracked during testing. The specimen's resilient deformations were simultaneously recorded. bender element shear wave transducer pairs were also installed on the specimens to further validate the Smart Pebble small-strain responses. The results indicate a close agreement between the BE sensors and Smart Pebbles estimates towards local stiffness enhancement quantification in the geogrid specimen. The study findings confirm the viability of using the Smart Pebbles in describing the resilient behavior of an aggregate material under repeated loading.

2.
Molecules ; 29(9)2024 May 02.
Artigo em Inglês | MEDLINE | ID: mdl-38731594

RESUMO

The current study explores the prospective of a nitrogen-doped graphene (NG) incorporated into ZnSe-TiO2 composites via hydrothermal method for supercapacitor electrodes. Structural, morphological, and electronic characterizations are conducted using XRD, SEM, Raman, and UV analyses. The electrochemical study is performed and galvanostatic charge-discharge (GCD) and cyclic voltammetry (CV) are evaluated for the supercapacitor electrode material. Results demonstrate improved performance in the ZnSe-NG-TiO2 composite, indicating its potential for advanced supercapacitors with enhanced efficiency, stability, and power density. Specific capacity calculations and galvanic charge-discharge experiments confirmed the promising electrochemical activity of ZnSe-NG-TiO2, which has a specific capacity of 222 C/g. The negative link among specific capacity and current density demonstrated the composite's potential for high energy density and high-power density electrochemical devices. Overall, the study shows that composite materials derived from multiple families can synergistically improve electrode characteristics for advanced energy storage applications.

3.
Front Cardiovasc Med ; 10: 1305588, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38250034

RESUMO

Cardiovascular diseases (CVD) are the leading cause of mortality and morbidity worldwide. Dietary intake, particularly zinc (Zn) and copper (Cu) has been strongly associated with CVD. These trace elements play a crucial role in human enzyme activity, suppressing inflammation, catalyzing lipid metabolism enzymes, reducing oxidative stress, and regulating glucose metabolism. However, imbalances in these elements are linked to cardiovascular disturbances. Thus, this study aimed to investigate the association between circulating levels of Zn, Cu, and Zn/Cu ratio with CVD risk factors in the Qatari population. Bivariate logistic regression, adjusted for age, nationality, gender, and education was performed to examine the impact of Zn, Cu, and Zn/Cu ratio (as independent variables) on major CVD risk markers (as dependent variables). Participants in the highest Zn tertiles (T2 and T3) were at greater odds ratio (OR) of unfavorable metabolic functions such as elevated HbA1C [OR = 2.5, p = 0.015 (T2) and OR = 3.2, p = 0.002 (T3)], triglycerides [OR = 2.17, p = 0.015 (T2), and TyG index [OR = 2.21, p = 0.004 (T2), and OR = 2.67, p < 0.001 (T3)] compared to T1. Conversely, they had significantly lower ORs for prolonged prothrombin time [OR = 0.37, p = 0.001 (T3)]. Higher levels of Cu (T2 and T3) had higher OR for elevated HDL-C levels [OR = 1.69, p = 0.046 (T2), and OR = 2.27, p = 0.002 (T3)] and lower OR for elevated levels of triglycerides (OR = 0.4, p = 0.009, T3), diastolic blood pressure [OR = 0.41, p = 0.024 (T2), and OR = 0.47, p = 0.049 (T3)], and creatinine kinase (OR = 0.27, p = 0.014, T3) compared to T1. Higher levels of Cu (T2 and T3) were associated with a higher risk for elevated fibrinogen levels [OR = 3.1, p = 0.035 (T2), and OR = 5.04, p = 0.002 (T3)]. Additionally, higher Zn/Cu ratio (T2 and T3) were associated with lower ORs for elevated fibrinogen levels [OR = 0.3, p = 0.005 (T2), and OR = 0.27, p = 0.005 (T3)] compared to T1, indicating a lower risk of developing CVD. The study reveals a link between Zn, Cu, and the Zn/Cu ratio and cardiovascular disease risk. A higher Zn/Cu ratio may protect against CVD, while elevated Cu levels are linked to obesity, fibrinogen levels, and HbA1C. Maintaining optimal levels of these trace elements, either through diet or supplementation, may help reduce CVD risk.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA