RESUMO
Tumor-associated macrophages (TAMs) play a pivotal role in facilitating tumor growth and metastasis. This tumor-promoting propensity of TAMs sets in as a result of their complex cross-talk with tumor cells mediated primarily by tumor cell-secreted proteins in the tumor microenvironment. To explore such interactions, we employed an immunoscreening approach involving the immunization of Balb-c mice with model human lung carcinoma cell line, A549. From serological examination combined with mass spectrometric analysis, EDA-containing fibronectin (EDAFN ) was identified as a conspicuous immunogenic protein in A549 cell secretome. We showed that A549 secreted EDAFN engages TLR-4 on THP-1 monocytes to drive the proinflammatory response via NF-κB signaling cascade. Conversely, A549 derived EDAFN potentiates their metastatic capacity by inducing epithelial-mesenchymal transition through its autocrine activity. In conclusion, the study proposes a possible mechanism of cellular cross-talk between lung cancer cells and associated monocytes mediated by lung cancer-derived EDAFN and resulting in the establishment of proinflammatory and metastatic tumor microenvironment.
Assuntos
Fibronectinas/metabolismo , Neoplasias Pulmonares/metabolismo , Monócitos/metabolismo , Células A549 , Animais , Western Blotting , Transição Epitelial-Mesenquimal/fisiologia , Imunofluorescência , Células HT29 , Células HeLa , Humanos , Espectrometria de Massas , Camundongos , Camundongos Endogâmicos BALB C , Microambiente Tumoral/fisiologiaRESUMO
Follicle-stimulating hormone-follicle-stimulating hormone receptor (FSH-FSHR) interaction is one of the most thoroughly studied signaling pathways primarily because of being implicated in sexual reproduction in mammals by way of maintaining gonadal function and sexual fertility. Despite material advances in understanding the role of point mutations, their mechanistic basis in FSH-FSHR signaling is still confined to mystically altered behavior of sTYS335 (sulfated tyrosine) yet lacking a substantial theory. To understand the structural basis of receptor modulation, we choose two behaviorally contradicting mutations, namely S128Y (activating) and D224Y (inactivating), found in FSH receptor responsible for ovarian hyperstimulation syndrome and ovarian dysgenesis, respectively. Using short-term molecular dynamics simulations, the atomic scale investigations reveal that the binding pattern of sTYS with FSH and movement of the thumb region of FSHR show distinct contrasting patterns in the two mutants, which supposedly could be a critical factor for differential FSHR behavior in activating and inactivating mutations.
RESUMO
Crocus sativus, a monocot triploid species belonging to the Iridaceae family, is cultivated for its red stigmatic lobes of the carpel that constitute saffron. Flower development has been extensively studied in different plants. Different floral developmental pathways have been deciphered in many plants. In Crocus sativus, flower is the most important part and understanding the pathway underlying the flower development can pave the way for new avenues to improve its productivity and quality. The combination of class A genes (including APETALA1; CsAP1 and APETALA2; CsAP2), class B genes (including APETALA3; CsAP3 and PISTILLATA; CsPI) and class C genes (including AGAMOUS; CsAG) that are active in each whorl, determines the identity of the organs that will later develop in that whorl. CsAP3 is a class B homeotic gene which promotes petal and stamen formation and has a very important role in flower development. It also activates other genes playing pivotal role in flower development. It has been earlier reported that CsAP3 gene has direct role in activation of CsNAP gene which promotes senescence in plants. Present work was focused on study of relative gene expression changes of CsAP3 and CsNAP gene during different stages of flower development. CsAP3 gene expression was found maximum during late-preanthesis stages of stigma development. Expression increases from stage 5 to stage 6 of flower development and then reduces again from stage 6 to stage 7. CsNAP gene had moderate expression during stage 3 to stage 4 transition and its expression increased abruptly from stage 6 to stage 7 of flower development. There is no direct concordance in the expression of CsAP3 and CsNAP gene expression in saffron. We may conclude that some other factor(s) may be responsible for initiation of CsNAP expression and CsAP3 gene may directly/indirectly be involved in regulating the factors responsible for CsNAP activation.
RESUMO
P66Shc and Rac1 proteins are responsible for tumor-associated inflammation, particularly in brain tumors characterized by elevated oxidative stress and increased reactive oxygen species (ROS) production. Quercetin, a natural polyphenolic flavonoid, is a well-known redox modulator with anticancer properties. It has the capacity to cross the blood-brain barrier and, thus, could be a possible drug against brain tumors. In this study, we explored the effect of quercetin on Rac1/p66Shc-mediated tumor cell inflammation, which is the principal pathway for the generation of ROS in brain cells. Glioma cells transfected with Rac1, p66Shc, or both were treated with varying concentrations of quercetin for different time points. Quercetin significantly reduced the viability and migration of cells in an ROS-dependent manner with the concomitant inhibition of Rac1/p66Shc expression and ROS production in naïve and Rac1/p66Shc-transfected cell lines, suggestive of preventing Rac1 activation. Through molecular docking simulations, we observed that quercetin showed the best binding compared to other known Rac1 inhibitors and specifically blocked the GTP-binding site in the A-loop of Rac1 to prevent GTP binding and, thus, Rac1 activation. We conclude that quercetin exerts its anticancer effects via the modulation of Rac1-p66Shc signaling by specifically inhibiting Rac1 activation, thus restraining the production of ROS and tumor growth.
RESUMO
Floating arm injury represents a common yet complicated injury of the childhood severely associated with limb deformation and even morbidity, if not precisely addressed and credibly operated. Here, we report a rare floating upper limb case of a 9-year-old boy with multiple injuries of ipsilateral proximal humeral, supracondylar and distal radial limb. This is the first report to document such a combined floating elbow and floating arm injury in the same limb. In this report, we discuss the surgical procedures used and recovery of the patient monitored to ascertain the effectiveness of the method in limb reorganisation.
Assuntos
Fios Ortopédicos , Fraturas do Úmero , Fraturas do Rádio , Extremidade Superior , Acidentes por Quedas , Criança , Fixação de Fratura , Humanos , Masculino , Traumatismo Múltiplo , Radiografia , Extremidade Superior/diagnóstico por imagem , Extremidade Superior/lesões , Extremidade Superior/cirurgiaRESUMO
Matrix metalloproteinases (MMPs) are proteolytic enzymes that play a pivotal role in the transformation and progression of tumors at all stages, especially during the invasion and metastasis. The aim of this study was to determine the genetic association of MMP2, MMP7 and MMP9 promoter polymorphisms with colorectal cancer (CRC) susceptibility and development risk in ethnic Kashmiri population. The genotype frequencies of MMP2-1306C/T, MMP7-181A/G and MMP9-1562C/T SNPs were compared between 142 CRC patients and 184 healthy controls by using PCR-RFLP method. The association between all the three MMP promoter polymorphisms and the modulation of risk of CRC was found to be significant (p≤0.05). The heterozygous genotype (CT) of MMP2-1306C/T SNP and variant genotype (GG) of MMP7-181A/G SNP showed a significant association with decreased risk for the development of CRC [OR, 0.61 (95%CI, 0.37-1.01); p=0.05 and OR, 0.43 (95%CI, 0.20-0.90); p=0.02, respectively] whereas the heterozygous genotype (CT) of MMP9-1562C/T SNP showed a significant association with increased risk for the development of colorectal cancer [OR, 1.88 (95%CI, 1.11-3.18); p=0.02]. Further, the less common MMP9-1562T allele was found to be significantly associated with an increased risk of colorectal cancer [OR, 1.74 (95%CI, 1.15-2.62); p=0.007]. Our results suggest that these MMP2, MMP7 and MMP9 promoter polymorphisms play a role as one of the key modulators of the risk of developing colorectal cancer in Kashmiri population.
Assuntos
Neoplasias Colorretais/genética , Predisposição Genética para Doença , Metaloproteinase 2 da Matriz/genética , Metaloproteinase 7 da Matriz/genética , Metaloproteinase 9 da Matriz/genética , Polimorfismo de Nucleotídeo Único , Adulto , Idoso , Estudos de Casos e Controles , Neoplasias Colorretais/diagnóstico , Neoplasias Colorretais/enzimologia , Neoplasias Colorretais/etnologia , Etnicidade , Feminino , Expressão Gênica , Heterozigoto , Humanos , Masculino , Metaloproteinase 2 da Matriz/metabolismo , Metaloproteinase 7 da Matriz/metabolismo , Metaloproteinase 9 da Matriz/metabolismo , Pessoa de Meia-Idade , Polimorfismo de Fragmento de Restrição , Regiões Promotoras GenéticasRESUMO
Several lines of evidence indicate that Fibronectin Extra Domain A (EDA) promotes metastatic capacity of tumor cells by engaging cell surface α9ß1 integrins. This interaction mediated by the C-C loop of EDA activates pro-oncogenic signaling pathways leading to epithelial to mesenchymal transition (EMT) of tumor cells, thus signifying its importance in control of metastatic progression. In this context the present study was designed to explore the active compounds from selected ethno-medicinal plants of western Himalayan region for targeting EDA of Fibronectin in lung carcinoma cells. Structure based informatics for drug designing and screening was employed to generate a lead compound(s) feed that were conformationally and energetically viable. Out of 120 compounds selected, Irigenin showed best binding-affinity with C-C loop of EDA. Irigenin specifically targeted α9ß1 and α4ß1 integrin binding sites on EDA comprising LEU46, PHE47, PRO48, GLU58, LEU59 and GLN60 in its C-C loop as evaluated by energy decomposition per residue of Irigenin-EDA complex. In-vitro cell motility assays complemented with EDA knock-in and knockdown assays distinctively demonstrated that Irigenin prevents metastatic capacity of lung cancer cells by selectively blocking EDA. The results presented thus project Irigenin as a lead compound to overcome Fibronectin EDA induced metastatic progression in lung carcinoma cells.
Assuntos
Antineoplásicos Fitogênicos/farmacologia , Transição Epitelial-Mesenquimal/efeitos dos fármacos , Fibronectinas/antagonistas & inibidores , Isoflavonas/farmacologia , Neoplasias Pulmonares/tratamento farmacológico , Proteínas de Neoplasias/antagonistas & inibidores , Células A549 , Antineoplásicos Fitogênicos/química , Transição Epitelial-Mesenquimal/genética , Fibronectinas/genética , Fibronectinas/metabolismo , Humanos , Cadeias alfa de Integrinas/genética , Cadeias alfa de Integrinas/metabolismo , Integrina beta1/genética , Integrina beta1/metabolismo , Isoflavonas/química , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/metabolismo , Neoplasias Pulmonares/patologia , Metástase Neoplásica , Proteínas de Neoplasias/genética , Proteínas de Neoplasias/metabolismo , Ligação Proteica , Domínios ProteicosRESUMO
Vascular endothelial growth factor receptor 1 (VEGFR-1) has been implicated in diverse pathologies, including cancers. Although VEGFR-1 is considered as functionally impaired kinase, its decoy characteristics make it an important regulator of VEGFR-mediated signaling, particularly in tumor angiogenesis. VEGFR-1 conveys signaling via its tyrosine kinase (TK) domain whose activation is regulated by phosphorylation of specific tyrosine residues. Thus dysregulation of VEGFR-1 signaling, as reported in most of the cancers, might be a consequence of altered phosphorylation that could be attributed to genotypic variations in its TK domain. Considering the importance of TK domain of VEGFR-1, we carried out its mutational screening in 84 clinically validated and histopathologically confirmed colorectal cancer patients. By means of direct DNA sequencing and SNP analyses, eight novel variations, including one synonymous, two deletion, one missense and four intronic variations, were reported in the TK domain of VEGFR-1. rs730882263:C>G variation specifically reported in colon cancer, representing a single-atomic change (Sulfur to Oxygen) in the predicted (p.Cys1110Ser) protein, was observed as potentially deleterious variation as assessed by multiple single-nucleotide polymorphism prediction servers. Molecular dynamics simulations of VEGFR-1 Wt and (p.Cys1110Ser) variant models revealed major conformational changes in variant protein presumptuously generating an open conformation thereby exposing the activation domain and consequently increasing the probability of phosphorylation events: a condition frequently reported in cancers.
Assuntos
Sítio Alostérico , Neoplasias Colorretais/genética , Simulação de Dinâmica Molecular , Mutação de Sentido Incorreto , Receptor 1 de Fatores de Crescimento do Endotélio Vascular/química , Regulação Alostérica , Feminino , Deleção de Genes , Humanos , Masculino , Fosforilação , Polimorfismo de Nucleotídeo Único , Conformação Proteica em alfa-Hélice , Processamento de Proteína Pós-Traducional , Receptor 1 de Fatores de Crescimento do Endotélio Vascular/genética , Receptor 1 de Fatores de Crescimento do Endotélio Vascular/metabolismoRESUMO
Lung cancer is the major cause of cancer-related mortality worldwide owing to its late-stage detection and aggressive behavior. Epidemiologically, several genetic and epigenetic factors contribute to the development of lung cancer. Angiogenesis, a critical process in tumor progression has become an important target for anti-cancer therapy particularly in lung cancer. Besides commercially available angiogenic inhibitors, numerous anti-angiogenic therapies have been developed to limit tumor growth, although, most of them have not proved beneficial in terms of long-term survival. Despite, logical advances in treatment strategies, NSCLC still remains a major health concern due to poor prognosis of the diseases state. This calls for a comprehensive analysis of signaling processes governing tumor angiogenesis and treatment options available thereof for development of a sustainable strategy to control cancer. In this review, several aspects of lung cancer have been discussed starting from its pathological characterization to the development of modern therapeutics.
Assuntos
Neoplasias Pulmonares/genética , Neovascularização Patológica/genética , Receptores de Fatores de Crescimento do Endotélio Vascular/genética , Inibidores da Angiogênese/uso terapêutico , Progressão da Doença , Humanos , Neoplasias Pulmonares/tratamento farmacológico , Neoplasias Pulmonares/patologia , Neovascularização Patológica/tratamento farmacológico , Neovascularização Patológica/patologia , Transdução de Sinais/efeitos dos fármacosRESUMO
OBJECTIVES: Tumors not only manage to escape from the host immune system, but they effectively contrive to benefit from infiltrating immune cells by modifying their functions so as to create a pro-inflammatory microenvironment favorable for tumor progression and metastasis. In this study we investigated if tectorigenin could suppress lung cancer-induced pro-inflammatory response generated from monocytes. MATERIALS AND METHODS: A549:THP1 co-culture model was set-up favoring release of pro-inflammatory cytokines interleukin (IL)-6 and tumor necrosis factor alpha (TNF-α). Effect of tectorigenin on A549 imparted invasive phenotype of A549:THP-1 co-culture was monitored by cytokine release from monocytes, and metastasis/epithelial-mesenchymal transitiom (EMT) in A549 cells. RESULTS: In a contact A549:THP1 co-culture model, THP-1 cells were activated by A549 cells favoring secretion of pro-inflammatory cytokines, TNF-α and IL-6. However, priming of A549 cells with tectorigenin for 24h repressed A549 cell-induced secretion of TNF-α and IL-6 by THP-1 cells. Tectorigenin induced change in functional phenotype of A549 cells rendered THP-1 cells non-responsive for the secretion of IL-6 and TNF-α in a contact co-culture setup. Additionally, conditioned media from this non-responsive A549:THP-1 co-culture suppressed metastatic potential of A549 cells as confirmed by the wound healing and transwell migration assays. These finding were further corroborated by decrease in expression of Snail with a concomitant increase in E-cadherin, the two signature markers of EMT. CONCLUSION: These results clearly demonstrate the therapeutic potential of tectorigenin to prevent lung cancer elicited inflammatory and pro-metastatic response in monocytes and warrants further investigations to elucidate its mechanism of action.
Assuntos
Transição Epitelial-Mesenquimal/efeitos dos fármacos , Inflamação/prevenção & controle , Isoflavonas/farmacologia , Neoplasias Pulmonares/patologia , Caderinas/biossíntese , Linhagem Celular Tumoral , Ensaios de Migração Celular , Técnicas de Cocultura , Citocinas/metabolismo , Humanos , Interleucina-6/metabolismo , Neoplasias Pulmonares/prevenção & controle , Monócitos/efeitos dos fármacos , Monócitos/metabolismo , Invasividade Neoplásica/prevenção & controle , Fatores de Transcrição da Família Snail , Fatores de Transcrição/biossíntese , Fator de Necrose Tumoral alfa/metabolismo , Cicatrização/efeitos dos fármacosRESUMO
Proteomic analysis using multiplex affinity reagents is perhaps the most reliable strategy to capture differentially expressed proteins that are slightly or immensely modified. In addition to expressional variation, it is comprehensively evident that the immunogenicity of a protein can be a deciding factor for instigating an inflammation afflicted-carcinogenesis. Considering both these factors, a simple and systematic strategy was designed to capture the immunogenic cancer biomarkers from sera of colorectal cancer patients. The affinity reagent, in the form of an antibody repertoire against the secretome of the HT29 cell line was used to grade the sera samples on the basis of the degree of immuno-reactivity and to capture differentially expressed antigens from the patient sera. Following affinity based 2DE-MALDI-TOF; the proteins were identified as (1) soluble vimentin; and (2) TGF-beta-inhibited membrane-associated protein (PP16B), in colon cancer sera and (3) keratin, type II cytoskeletal protein in rectal cancer sera. Pathway reconstruction and protein-protein networking of identified proteins predicted only Vimentin to be physically and genetically engaged in close proximity with the most established colorectal cancer associated tumorigenic pathways. Furthermore, our findings suggest that a possible surface stoichiometric shift in the structure of protein could be due to mutations in the coding sequence of Vimentin that may elicit its enhanced secretion possibly due to protein-hyperphosphorylation. Of the three proteins identified, only Vimentin showed higher expression in sera of colon cancer patients alone. Thus, it could be argued that vimentin might help in predicting individuals at higher risk of developing colon cancers. Our data are therefore suggestive of using vimentin as an antigen for tumor vaccination in an autologous set-up for colon cancers.
Assuntos
Biomarcadores Tumorais , Neoplasias do Colo/metabolismo , Proteômica , Vimentina/metabolismo , Antígenos de Neoplasias/sangue , Antígenos de Neoplasias/metabolismo , Linhagem Celular Tumoral , Neoplasias do Colo/sangue , Neoplasias do Colo/genética , Neoplasias Colorretais/sangue , Neoplasias Colorretais/metabolismo , Humanos , Modelos Moleculares , Polimorfismo de Nucleotídeo Único , Conformação Proteica , Mapeamento de Interação de Proteínas , Proteoma , Proteômica/métodos , Transdução de Sinais , Vimentina/sangue , Vimentina/química , Vimentina/genéticaRESUMO
BACKGROUND: Cancer loci comprise heterogeneous cell populations with diverse cellular secretions. Therefore, disseminating cancer-specific or cancer-associated protein antigens from tissue lysates could only be marginally correct, if otherwise not validated against precise standards. MATERIALS AND METHODS: In this study, 2DE proteomic profiles were examined from lysates of 13 lung-adenocarcinoma tissue samples and matched against the A549 cell line proteome. A549 matched-cancer-specific hits were analyzed and characterized by MALDI-TOF/MS. RESULTS: Comparative analysis identified a total of 13 protein spots with differential expression. These proteins were found to be involved in critical cellular functions regulating pyrimidine metabolism, pentose phosphate pathway and integrin signaling. Gene ontology based analysis classified majority of protein hits responsible for metabolic processes. Among these, only a single non-predictive protein spot was found to be a cancer cell specific hit, identified as Armadillo repeat-containing protein 8 (ARMC8). Pathway reconstruction studies showed that ARMC8 lies at the centre of cancer metabolic pathways. CONCLUSIONS: The findings in this report are suggestive of a regulatory role of ARMC8 in control of proliferation and differentiation in lung adenocarcinomas.