Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Appl Microbiol Biotechnol ; 107(21): 6487-6496, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37672071

RESUMO

Today, enzymatic treatment is a progressive field in combating biofilm producing pathogens. In this regard, serratiopeptidase, a medicinally important metalloprotease, has been recently highlighted as an enzyme with proved anti-biofilm activity. In the present study, in order to increase the long-lasting effects of the enzyme, serratiopeptidase and the novel engineered forms with enhanced anti-biofilm activity were immobilized on the surface of cellulose nanofibers (CNFs) as a natural polymer with eminent properties. For this, recombinant serratiopeptidases including the native and previously designed enzymes were produced, purified and conjugated to the CNF by chemical and physical methods. Immobilization was confirmed using different scanning and microscopic methods. The enzyme activity was assessed using casein hydrolysis test. Enzyme release analysis was performed using dialysis tube method. Anti-biofilm activity of free and immobilized enzymes has been examined on Staphylococcus aureus and Pseudomonas aeruginosa strains. Finally, cytotoxicity of enzyme-conjugated CNFs was performed by MTT assay. The casein hydrolysis results confirmed fixation of all recombinant enzymes on CNFs by chemical method; however, inadequate fixation of these enzymes was found using cold atmospheric plasma (CAP). The AFM, FTIR, and SEM analysis confirmed appropriate conjugation of enzymes on the surface of CNFs. Immobilization of enzymes on CNFs improved the anti-biofilm activity of serratiopeptidase enzymes. Interestingly, the novel engineered serratiopeptidase (T344 [8-339ss]) exhibited the highest anti-biofilm activity in both conjugated and non-conjugated forms. In conclusion, incorporation of serratiopeptidases into CNFs improves their anti-biofilm activities without baring any cytotoxicity. KEY POINTS: • Enzymes were successfully immobilized on cellulose nanofibers using chemical method. • Immobilization of enzymes on CNFs improved their anti-biofilm activity. • T344 [8-339ss] exhibited the highest anti-biofilm activity in both conjugated and non-conjugated forms.


Assuntos
Celulose , Nanofibras , Celulose/química , Nanofibras/química , Caseínas , Biofilmes
2.
Arch Microbiol ; 204(6): 343, 2022 May 20.
Artigo em Inglês | MEDLINE | ID: mdl-35596084

RESUMO

Cold atmospheric plasma (CAP) is being used recently as a modern technique for microbial random mutagenesis. In the present study, CAP was used to induce mutagenesis in L. enzymogenes which is the bacteria known for producing proteolytic enzymes especially lysyl endopeptidase (Lys C). Enhanced proteolytic activity was the main criteria to select mutant strains. Therefore, the cell suspension of L. enzymogenes strain (ATCC 29487), was exposed to CAP for 30, 45, 90, and 150 s. The proteolytic activity of mutant strains was screened initially by radial caseinolytic assay and then by Ansons method in different phases of bacterial growth in the selected mutants. The purification process of Lysyl endopeptidase as the target enzyme was optimized and for enlightening molecular aspect of CAP mutagenesis, the sequences of the upstream and coding regions of lys C gene from 10 selected mutant strains were determined. The bacterial survival assessment showed that the more CAP treatment time, the less survival rate, however, in all exposure times, a number of survived mutants showed enhanced proteolytic activity. Among 38 out of 100 examined mutants which showed higher proteolytic activity than that of wild type, the M1-30 s mutant exhibited the highest increment to 1.94 fold. The SDS-PAGE analysis showed expected size of purified Lys C from M1-30 s. The Lys C gene from M14-150 s mutant strain (1.4-fold increment) harbored three point mutations which can be effective in enhancing protease activity. In conclusion, the results highlighted the role of CAP for strain improvement process to obtain industrial strains.


Assuntos
Lysobacter , Gases em Plasma , Bactérias/metabolismo , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Lysobacter/genética , Lysobacter/metabolismo , Gases em Plasma/metabolismo , Gases em Plasma/farmacologia
3.
World J Microbiol Biotechnol ; 38(1): 17, 2021 Dec 13.
Artigo em Inglês | MEDLINE | ID: mdl-34897561

RESUMO

Serratiopeptidase is a bacterial protease that has been used medicinally in variety of applications. Though, some drawbacks like sensitivity to environmental conditions and low penetration into cells limited its usage as a potent pharmaceutical agent. This study aimed to produce four novel truncated serratiopeptidase analogs with different lengths and possessing one disulfide bridge, in order to enhance protease activity and thermal stability of this enzyme. Mutagenesis and truncation were performed using specific primers by conventional and overlap PCR. The recombinant proteins were expressed in E. coli cells then purified and their protease activity and stability were checked at different pH and temperatures in comparison to the native form of the enzyme, Serra473. Enzyme activity assay showed that T306 [12-302 ss] was not further active which could be due to the large truncation. However, T344 [8-339 ss], T380 [8-339 ss] and T380 [12-302 ss] proteins showed higher proteolytic activity comparing to Serra473. These analogs were active at temperatures of 25-90 °C and pH 6-9.5. Interestingly, remaining enzyme activity of T344 [8-339 ss], T380 [8-339 ss] and T380 [12-302 ss] forms at 90 °C calculated as 87, 83 and 86 percent, respectively, comparing to the activity at room temperature. However, residual activity at the same conditions was 50% for the full length enzyme. Formation of disulfide bond in engineered serratiopeptidases could be the main reason for higher thermal stability compared to Serra473. Thermostability of T344 [8-339 ss], as the most thermostable designed serratiopeptidase, was additionally confirmed using differential scanning calorimetry.


Assuntos
Estabilidade Enzimática , Escherichia coli/metabolismo , Peptídeo Hidrolases/genética , Peptídeo Hidrolases/metabolismo , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Engenharia Genética , Concentração de Íons de Hidrogênio , Microbiologia Industrial , Mutagênese Sítio-Dirigida , Proteólise , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Temperatura
4.
Iran J Public Health ; 49(5): 931-939, 2020 May.
Artigo em Inglês | MEDLINE | ID: mdl-32953681

RESUMO

BACKGROUND: Serratiopeptidase is a bacterial metalloprotease, which is useful for the treatment of pain and inflammation. It breaks down fibrin, thins the fluids formed during inflammation and acts as an anti-biofilm agent. Because of medicinally important role of the enzyme, we aimed to study the cloning and the expression optimization of serratiopeptidase. METHODS: The heat-stable serratiopeptidase (5d7w) was selected as the template. Cloning into pET28a expression vector was performed and confirmed by colony PCR and double restriction enzyme digestion. The recombinant protein was expressed in Esherichia coli BL21 and confirmed by SDS-PAGE and Western blot analysis. Different parameters such as expression vector, culture media, post-induction incubation temperature, inducer concentration, and post-induction incubation time were altered to obtain the highest amount of the recombinant protein. RESULTS: Serratiopeptidase was successfully cloned and expressed under optimized conditions in E. coli which confirmed by western blot analysis. The optimal conditions of expression were determined using pQE30 as vector, cultivating the host bacteria in Terrific Broth (TB) medium, at 37° C, induction by IPTG concentration equal to 0.5 mM, and cells were harvested 4 h after induction. CONCLUSION: As serratiopeptidase is a multi-potent enzyme, the expressed recombinant protein can be considered as a valuable agent for pharmaceutical applications in further studies.

5.
Arch Iran Med ; 20(5): 270-281, 2017 May.
Artigo em Inglês | MEDLINE | ID: mdl-28510462

RESUMO

BACKGROUND: Eradication of malaria will depend on discovery of new intervention tools such as anti-malarial drugs. Due to the increasing interest in the application of propolis against significant clinical pathogenic agents, the aim of the present investigation was to evaluate the anti-plasmodial effect of Iranian propolis extracts against chloroquine (CQ)-sensitive Plasmodium falciparum 3D7 and Plasmodium berghei (ANKA strain). METHODS: Crude samples of honeybee (Apis mellifera) propolis were collected from four provinces in northern (Kalaleh, Golestan), northeastern (Chenaran, Razavi Khorasan), central (Taleghan, Alborz) and western (Morad Beyg, Hamedan) areas of Iran with different types of flora. The dried propolis samples were extracted with three different solvents, including ethanol 70% (EtOH), ethyl acetate (EA) and dichloromethane (DCM). RESULTS: All extracts were shown to have in vitro anti-plasmodial activity with IC50 ranging from 16.263 to 80.012 µg/mL using parasite lactate dehydrogenase (pLDH) assay. The DCM extract of Morad Beyg propolis indicated the highest anti-plasmodial activity (IC50: 16.263 ± 2.910 µg/mL; P = 0.027, Kruskal-Wallis H-test). The samples were also evaluated in mice for their in vivo anti-plasmodial effect. The curative effect against established infection (Rane test) showed that both extracts at all doses (50, 100, and 200 mg/kgBW) produced anti-plasmodial activity against the parasite. Furthermore, using gas chromatography-mass spectrometry (GC-MS), the quantity of flavonoids in DCM and EtOH 70% extracts were found to be 7.42% and 3.10%, respectively. CONCLUSION: The potent anti-plasmodial activity of both EtOH 70% and DCM extracts of the propolis of Morad Beyg, Hamedan suggests further analyses of individual components to assess its utilization as anti-malarial drugs.


Assuntos
Antimaláricos/farmacologia , Plasmodium berghei/efeitos dos fármacos , Plasmodium falciparum/efeitos dos fármacos , Própole/farmacologia , Animais , Antimaláricos/administração & dosagem , Flavonoides , Cromatografia Gasosa-Espectrometria de Massas , Humanos , Irã (Geográfico) , Malária/tratamento farmacológico , Camundongos , Extratos Vegetais/farmacologia , Própole/administração & dosagem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA