Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 36
Filtrar
1.
Mol Pharmacol ; 96(1): 13-25, 2019 07.
Artigo em Inglês | MEDLINE | ID: mdl-31043460

RESUMO

Pancreatic cancer is one of the most lethal types of tumors with no effective therapy available; is currently the third leading cause of cancer in developed countries; and is predicted to become the second deadliest cancer in the United States by 2030. Due to the marginal benefits of current standard chemotherapy, the identification of new therapeutic targets is greatly required. Considering that cAMP pathway is commonly activated in pancreatic ductal adenocarcinoma (PDAC) and its premalignant lesions, we aim to investigate the multidrug resistance-associated protein 4 (MRP4)-dependent cAMP extrusion process as a cause of increased cell proliferation in human PDAC cell lines. Our results from in silico analysis indicate that MRP4 expression may influence PDAC patient outcome; thus, high MRP4 levels could be indicators of poor survival. In addition, we performed in vitro experiments and identified an association between higher MRP4 expression levels and more undifferentiated and malignant models of PDAC and cAMP extrusion capacity. We studied the antiproliferative effect and the overall cAMP response of three MRP4 inhibitors, probenecid, MK571, and ceefourin-1 in PDAC in vitro models. Moreover, MRP4-specific silencing in PANC-1 cells reduced cell proliferation (P < 0.05), whereas MRP4 overexpression in BxPC-3 cells significantly incremented their growth rate in culture (P < 0.05). MRP4 pharmacological inhibition or silencing abrogated cell proliferation through the activation of the cAMP/Epac/Rap1 signaling pathway. Also, extracellular cAMP reverted the antiproliferative effect of MRP4 blockade. Our data highlight the MRP4-dependent cAMP extrusion process as a key participant in cell proliferation, indicating that MRP4 could be an exploitable therapeutic target for PDAC. SIGNIFICANCE STATEMENT: ABCC4/MRP4 is the main transporter responsible for cAMP efflux. In this work, we show that MRP4 expression may influence PDAC patient outcome and identify an association between higher MRP4 expression levels and more undifferentiated and malignant in vitro models of PDAC. Findings prove the involvement of MRP4 in PDAC cell proliferation through a novel extracellular cAMP mitogenic pathway and further support MRP4 inhibition as a promising therapeutic strategy for PDAC treatment.


Assuntos
Carcinoma Ductal Pancreático/metabolismo , AMP Cíclico/metabolismo , Proteínas Associadas à Resistência a Múltiplos Medicamentos/genética , Proteínas Associadas à Resistência a Múltiplos Medicamentos/metabolismo , Neoplasias Pancreáticas/metabolismo , Benzotiazóis/farmacologia , Carcinoma Ductal Pancreático/genética , Diferenciação Celular/efeitos dos fármacos , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Simulação por Computador , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Inativação Gênica , Células HEK293 , Humanos , Neoplasias Pancreáticas/genética , Probenecid/farmacologia , Prognóstico , Propionatos/farmacologia , Quinolinas/farmacologia , Transdução de Sinais/efeitos dos fármacos , Análise de Sobrevida , Triazóis/farmacologia , Regulação para Cima
2.
Biochim Biophys Acta ; 1860(9): 1998-2007, 2016 09.
Artigo em Inglês | MEDLINE | ID: mdl-27316323

RESUMO

BACKGROUND: Histamine, through histamine H2 receptor (H2R), modulates different biological processes, involving the modulation of PI3K/AKT/mTOR and RAS/RAF/MEK/ERK pathways. Many evidences have demonstrated the existence and importance of the crossregulation between these two signaling pathways. The aim of the present work was to determine the molecular mechanisms leading to PI3K and ERK pathways modulation induced by the H2R agonist amthamine and to evaluate the possible interplay between them. METHODS: Phosphorylation levels of ERK and Akt were examined by Western blot in HEK293T cells expressing the human H2R, in the presence of H2R agonist and dominant negative mutants or pharmacological inhibitors of different proteins/pathways. Transcriptional activity assays were assessed to determine SRE activity. Amthamine-mediated cellular proliferation was investigated in MA-10A cells in the presence of PI3K inhibitor. RESULTS: H2R agonist inhibits PI3K/Akt/mTOR and stimulates Ras/MEK/ERK pathways. Moreover, PI3K/Akt/mTOR signaling inhibition is necessary to achieve H2R mediated ERK activation. In the presence of a constitutive active mutant of Akt, amthamine is not able to mediate ERK activation. This crosstalk affects classical ERK downstream targets such as Elk1 phosphorylation and the transcriptional activity of the SRE, classically associated to proliferation. We further demonstrate that amthamine-induced proliferation in Leydig MA-10 tumor cells, is enhanced by LY294002, a PI3K inhibitor. CONCLUSIONS: These results describe a crosstalk between PI3K/AKT/mTOR and Ras/MEK/ERK pathways induced by H2R stimulation with implications in cell proliferation. GENERAL SIGNIFICANCE: This work indicates that the modulation of PI3K/AKT/mTOR pathway by H2R in turn regulates Ras/MEK/ERK activation conditioning the proliferative capacity of the cells.


Assuntos
MAP Quinases Reguladas por Sinal Extracelular/metabolismo , Agonistas dos Receptores Histamínicos/farmacologia , Histamina/metabolismo , Sistema de Sinalização das MAP Quinases/efeitos dos fármacos , Fosfatidilinositol 3-Quinases/metabolismo , Transdução de Sinais/efeitos dos fármacos , Linhagem Celular , Proliferação de Células/efeitos dos fármacos , Células HEK293 , Humanos , Fosforilação/efeitos dos fármacos , Proteínas Proto-Oncogênicas c-akt/metabolismo , Serina-Treonina Quinases TOR/metabolismo , Tiazóis/farmacologia
3.
Handb Exp Pharmacol ; 241: 141-160, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-27316911

RESUMO

Acute myeloid leukemia (AML) consists in a cancer of early hematopoietic cells arising in the bone marrow, most often of those cells that would turn into white blood cells (except lymphocytes). Chemotherapy is the treatment of choice for AML but one of the major complications is that current drugs are highly toxic and poorly tolerated. In general, treatment for AML consists of induction chemotherapy and post-remission therapy. If no further post-remission is given, almost all patients will eventually relapse. Histamine, acting at histamine type-2 (H2) receptors on phagocytes and AML blast cells, helps prevent the production and release of oxygen-free radicals, thereby protecting NK and cytotoxic T cells. This protection allows immune-stimulating agents, such as interleukin-2 (IL-2), to activate cytotoxic cells more effectively, enhancing the killing of tumor cells. Based on this mechanism, post-remission therapy with histamine and IL-2 was found to significantly prevent relapse of AML. Alternatively, another potentially less toxic approach to treat AML employs drugs to induce differentiation of malignant cells. It is based on the assumption that many neoplastic cell types exhibit reversible defects in differentiation, which upon appropriate treatment results in tumor reprogramming and the induction of terminal differentiation. There are promissory results showing that an elevated and sustained signaling through H2 receptors is able to differentiate leukemia-derived cell lines, opening the door for the use of H2 agonists for specific differentiation therapies. In both situations, histamine acting through H2 receptors constitutes an eligible treatment to induce leukemic cell differentiation, improving combined therapies.


Assuntos
Células Sanguíneas/metabolismo , Leucemia Mieloide Aguda/metabolismo , Receptores Histamínicos H2/sangue , Receptores Histamínicos H2/metabolismo , Histamina/metabolismo , Humanos , Interleucina-2/metabolismo , Leucemia Mieloide Aguda/sangue , Masculino
4.
Mol Pharmacol ; 90(5): 640-648, 2016 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-27625037

RESUMO

H1 and H2 histamine receptor antagonists, although developed many decades ago, are still effective for the treatment of allergic and gastric acid-related conditions. This article focuses on novel aspects of the pharmacology and molecular mechanisms of histamine receptors that should be contemplated for optimizing current therapies, repositioning histaminergic ligands for new therapeutic uses, or even including agonists of the histaminergic system in the treatment of different pathologies such as leukemia or neurodegenerative disorders. In recent years, new signaling phenomena related to H1 and H2 receptors have been described that make them suitable for novel therapeutic approaches. Crosstalk between histamine receptors and other membrane or nuclear receptors can be envisaged as a way to modulate other signaling pathways and to potentiate the efficacy of drugs acting on different receptors. Likewise, biased signaling at histamine receptors seems to be a pharmacological feature that can be exploited to investigate nontraditional therapeutic uses for H1 and H2 biased agonists in malignancies such as acute myeloid leukemia and to avoid undesired side effects when used in standard treatments. It is hoped that the molecular mechanisms discussed in this review contribute to a better understanding of the different aspects involved in histamine receptor pharmacology, which in turn will contribute to increased drug efficacy, avoidance of adverse effects, or repositioning of histaminergic ligands.


Assuntos
Histamina/metabolismo , Receptor Cross-Talk , Receptores Histamínicos H1/metabolismo , Receptores Histamínicos H2/metabolismo , Animais , Humanos , Ligantes , Modelos Biológicos
5.
Biochem J ; 459(1): 117-26, 2014 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-24417223

RESUMO

7TMRs (seven-transmembrane receptors) exist as conformational collections in which different conformations would lead to differential downstream behaviours such as receptor phosphorylation, G-protein activation and receptor internalization. In this context, a ligand may cause differential activation of some, but not all, of the signalling events, which are associated to a particular receptor, and it would lead to biased agonism. The aim of the present study was to investigate whether H2R (histamine H2 receptor) ligands, described as inverse agonists because of their negative efficacy at modulating adenylate cyclase, could display some positive efficacy concerning receptor desensitization, internalization or even signalling through an adenylate-cyclase-independent pathway. Our present findings indicate that treatment with H2R inverse agonists leads to receptor internalization in HEK (human embryonic kidney)-293T transfected cells, by a mechanism mediated by arrestin and dynamin, but independent of GRK2 (G-protein-coupled receptor kinase 2)-mediated phosphorylation. On the other hand, we prove that two of the H2R inverse agonists tested, ranitidine and tiotidine, also induce receptor desensitization. Finally, we show that these ligands are able to display positive efficacy towards the ERK1/2 (extracellular-signal-regulated kinase 1/2) pathway by a mechanism that involves Gßγ and PI3K (phosphoinositide 3-kinase)-mediated signalling in both transfected HEK-293T cells and human gastric adenocarcinoma cells. These results point to the aspect of pluridimensional efficacy at H2R as a phenomenon that could be extended to naïve cells, and challenge previous classification of pharmacologically relevant histaminergic ligands.


Assuntos
Agonismo Inverso de Drogas , Antagonistas dos Receptores H2 da Histamina/metabolismo , Receptores Histamínicos H2/metabolismo , Transdução de Sinais/fisiologia , Linhagem Celular Tumoral , Células HEK293 , Antagonistas dos Receptores H2 da Histamina/farmacologia , Humanos , Ligantes , Ranitidina/metabolismo , Ranitidina/farmacologia , Transdução de Sinais/efeitos dos fármacos
6.
Mol Pharmacol ; 83(5): 1087-98, 2013 May.
Artigo em Inglês | MEDLINE | ID: mdl-23462507

RESUMO

G protein-coupled receptor signaling does not result from sequential activation of a linear pathway of proteins/enzymes, but rather from complex interactions of multiple, branched signaling routes, i.e., signaling networks. In this work we present an exhaustive study of the cross-talk between H1 and H2 histamine receptors (H1R and H2R) in U937 cells and Chinese hamster ovary-transfected cells. By desensitization assays we demonstrated the existence of a crossdesensitization between both receptors independent of protein kinase A or C. H1R-agonist stimulation inhibited cell proliferation and induced apoptosis in U937 cells following treatment of 48 hours. H1R-induced antiproliferative and apoptotic response was inhibited by an H2R agonist suggesting that the cross-talk between both receptors modifies their function. Binding and confocal microscopy studies revealed cointernalization of both receptors upon treatment with the agonists. To evaluate potential heterodimerization of the receptors, sensitized emission fluorescence resonance energy transfer experiments were performed in human embryonic kidney 293T cells using H1R-cyan fluorescent protein and H2R-yellow fluorescent protein. To our knowledge these findings may represent the first demonstration of agonist-induced heterodimerization of the H1R and H2R. In addition, we also show that the inhibition of the internalization process did not prevent receptor crossdesensitization, which was mediated by G protein-coupled receptor kinase 2. Our study provides new insights into the complex signaling network mediated by histamine and further knowledge for the rational use of its ligands.


Assuntos
Receptores Histamínicos H1/metabolismo , Receptores Histamínicos H2/metabolismo , Animais , Apoptose/efeitos dos fármacos , Apoptose/fisiologia , Células CHO , Linhagem Celular , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Cricetinae , Proteínas Quinases Dependentes de AMP Cíclico/metabolismo , Quinase 2 de Receptor Acoplado a Proteína G/metabolismo , Células HEK293 , Histamina/metabolismo , Agonistas dos Receptores Histamínicos/farmacologia , Humanos , Proteína Quinase C/metabolismo , Transdução de Sinais , Células U937
7.
Biochim Biophys Acta Gen Subj ; 1867(4): 130322, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36773726

RESUMO

BACKGROUND: Ceefourin-1 is a specific MRP4/ABCC4 inhibitor with potential antileukemic activity. In this study, we evaluate the ability of ceefourin-1 alone or in combination with histamine, an approved antileukemic agent, to induce cell differentiation or apoptosis in human acute myeloid leukemic cells. We also examine ceefourin-1 toxicity in mice. METHODS: U937, HL-60, and KG1a cells were used as models for human acute myeloid leukemia. Cyclic AMP efflux was estimated by measuring intracellular and extracellular cAMP levels. Cell differentiation was assessed by levels of CD14 and CD11b by FACS, and CD88 by western blot, and by cell morphology. Apoptosis was evaluated by cleavage of caspase-3 and PARP by western blot, and by annexin V binding assay. Subacute toxicity study of ceefourin-1 was carried out in BALB/c mice. RESULTS: Ceefourin-1 inhibits cAMP exclusion in AML cells and promotes intracellular signaling via CREB. Ceefourin-1 leads AML cells to apoptosis and histamine potentiates this effect, without evidence of cell differentiation. Intraperitoneal administration of ceefourin-1 shows no important alterations in mice blood parameters, hepatic, and renal functions, nor signs of histologic damage. CONCLUSIONS: These results show that ceefourin-1 promotes apoptosis in AML cells that is enhanced by histamine. GENERAL SIGNIFICANCE: This work indicates that ceefourin-1 represents a promising molecule that could be used alone or in combination with histamine for in vivo evaluation in acute myeloid leukemia malignancies.


Assuntos
Histamina , Leucemia Mieloide Aguda , Animais , Humanos , Camundongos , Apoptose , Transportadores de Cassetes de Ligação de ATP , Histamina/farmacologia , Leucemia Mieloide Aguda/metabolismo , Proteínas Associadas à Resistência a Múltiplos Medicamentos
8.
Neuropharmacology ; 239: 109674, 2023 11 15.
Artigo em Inglês | MEDLINE | ID: mdl-37541383

RESUMO

The molecular processes that underlie long-term memory formation involve signaling pathway activation by neurotransmitter release, which induces the expression of immediate early genes, such as Zif268, having a key role in memory formation. In this work, we show that the cannabinoid CB1 receptor signaling is necessary for the effects of dexamethasone on the behavioral response in an inhibitory avoidance task, on dexamethasone-induced ERK phosphorylation, and on dexamethasone-dependent Zif268 expression. Furthermore, we provide primary evidence for the mechanism responsible for this crosstalk between cannabinoid and glucocorticoid-mediated signaling pathways, showing that dexamethasone regulates endocannabinoid metabolism by inhibiting the activity of the Fatty acid amide hydrolase (FAAH), an integral membrane enzyme that hydrolyzes endocannabinoids and related amidated signaling lipids. Our results provide novel evidence regarding the role of the endocannabinoid system, and in particular of the CB1 receptor, as a mediator of the effects of glucocorticoids on the consolidation of aversive memories.


Assuntos
Canabinoides , Consolidação da Memória , Endocanabinoides/metabolismo , Receptor CB1 de Canabinoide/genética , Canabinoides/farmacologia , Transdução de Sinais , Glucocorticoides/farmacologia , Dexametasona/farmacologia , Amidoidrolases , Moduladores de Receptores de Canabinoides/farmacologia
9.
Food Chem Toxicol ; 177: 113822, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37169060

RESUMO

Breast cancer is one of the leading cancers among women worldwide. Given the evidence that pesticides play an important role in breast cancer, interest has grown in pesticide impact on disease progression. Hexachlorobenzene (HCB), an aryl hydrocarbon receptor (AhR) ligand, promotes triple-negative breast cancer cell migration and invasion. Estrogen receptor ß (ERß) inhibits cancer motility, while G protein-coupled ER (GPER) modulates the neoplastic transformation. Tryptophan is metabolized through the kynurenine pathway by indoleamine-2,3-dioxygenase (IDO) and tryptophan-2,3-dioxygenase (TDO), with kynurenine signaling activation often predicting worse prognosis in cancer. In this context, we examined the HCB (0.005; 0.05; 0.5 and 5 µM) effect on LM3 cells, a human epidermal growth factor receptor 2 (HER2)-positive breast cancer model. Results show that HCB increases IDO and TDO mRNA levels and promotes cell viability, proliferation and migration through the AhR pathway. Moreover, HCB boosts mammosphere formation, vascular endothelial growth factor and cyclooxygenase-2 expression and reduces IL-10 levels. For some parameters, U-shaped or inverted U-shaped dose-response curves are shown. HCB alters ER levels, reducing ERß while increasing GPER. These results demonstrate that exposure to environmentally relevant concentrations of HCB up-regulates the kynurenine pathway and dysregulates ERß and GPER levels, collaborating in HER2-positive breast cancer progression.


Assuntos
Dioxigenases , Praguicidas , Neoplasias de Mama Triplo Negativas , Feminino , Humanos , Hexaclorobenzeno/toxicidade , Cinurenina , Triptofano , Receptor beta de Estrogênio , Fator A de Crescimento do Endotélio Vascular , Linhagem Celular Tumoral , Neoplasias de Mama Triplo Negativas/metabolismo , Receptores de Hidrocarboneto Arílico/genética , Receptores de Hidrocarboneto Arílico/metabolismo
10.
J Biol Chem ; 286(33): 28697-28706, 2011 Aug 19.
Artigo em Inglês | MEDLINE | ID: mdl-21705320

RESUMO

It is widely assumed that G protein-coupled receptor kinase 2 (GRK2)-mediated specific inhibition of G protein-coupled receptors (GPCRs) response involves GRK-mediated receptor phosphorylation followed by ß-arrestin binding and subsequent uncoupling from the heterotrimeric G protein. It has recently become evident that GRK2-mediated GPCRs regulation also involves phosphorylation-independent mechanisms. In the present study we investigated whether the histamine H2 receptor (H2R), a Gα(s)-coupled GPCR known to be desensitized by GRK2, needs to be phosphorylated for its desensitization and/or internalization and resensitization. For this purpose we evaluated the effect of the phosphorylating-deficient GRK2K220R mutant on H2R signaling in U937, COS7, and HEK293T cells. We found that although this mutant functioned as dominant negative concerning receptor internalization and resensitization, it desensitized H2R signaling in the same degree as the GRK2 wild type. To identify the domains responsible for the kinase-independent receptor desensitization, we co-transfected the receptor with constructions encoding the GRK2 RGS-homology domain (RH) and the RH or the kinase domain fused to the pleckstrin-homology domain. Results demonstrated that the RH domain of GRK2 was sufficient to desensitize the H2R. Moreover, disruption of RGS functions by the use of GRK2D110A/K220R double mutant, although coimmunoprecipitating with the H2R, reversed GRK2K220R-mediated H2R desensitization. Overall, these results indicate that GRK2 induces desensitization of H2R through a phosphorylation-independent and RGS-dependent mechanism and extends the GRK2 RH domain-mediated regulation of GPCRs beyond Gα(q)-coupled receptors. On the other hand, GRK2 kinase activity proved to be necessary for receptor internalization and the resulting resensitization.


Assuntos
Quinase 2 de Receptor Acoplado a Proteína G/metabolismo , Receptores Histamínicos/metabolismo , Transdução de Sinais/fisiologia , Substituição de Aminoácidos , Animais , Células COS , Chlorocebus aethiops , Quinase 2 de Receptor Acoplado a Proteína G/genética , Células HEK293 , Humanos , Mutação de Sentido Incorreto , Fosforilação/fisiologia , Estrutura Terciária de Proteína , Receptores Histamínicos/genética , Células U937
11.
Pharmacol Res Perspect ; 10(2): e00913, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-35184416

RESUMO

G protein-coupled receptors kinase 2 (GRK2) plays a major role in receptor regulation and, as a consequence, in cell biology and physiology. GRK2-mediated receptor desensitization is performed by its kinase domain, which exerts receptor phosphorylation promoting G protein uncoupling and the cessation of signaling, and by its RGS homology (RH) domain, able to interrupt G protein signaling. Since GRK2 activity is exacerbated in several pathologies, many efforts to develop inhibitors have been conducted. Most of them were directed toward GRK2 kinase activity and showed encouraging results on in vitro systems and animal models. Nevertheless, limitations including unspecific effects or pharmacokinetics issues prevented them from advancing to clinical trials. Surprisingly, even though the RH domain demonstrated the ability to desensitize GPCRs, this domain has been less explored. Herein, we show in vitro activity of a series of compounds that, by inhibiting GRK2 RH domain, increase receptor cAMP response, avoid GRK2 translocation to the plasma membrane, inhibit coimmunoprecipitation of GRK2 with Gαs subunit of heterotrimeric G protein, and prevent receptor desensitization. Also, we preliminarily evaluated candidates' ADMET properties and observed suitable lipophilicity and cytotoxicity. These novel inhibitors of phosphorylation-independent actions of GRK2 might be useful in elucidating other RH domain roles and lay the foundation for the development of innovative pharmacologic therapy for diseases where GRK2 activity is exacerbated.


Assuntos
AMP Cíclico/metabolismo , Quinase 2 de Receptor Acoplado a Proteína G/antagonistas & inibidores , Linhagem Celular Tumoral , Desenvolvimento de Medicamentos , Quinase 2 de Receptor Acoplado a Proteína G/metabolismo , Células HEK293 , Humanos , Fosforilação , Domínios Proteicos/efeitos dos fármacos , Proteínas RGS/metabolismo , Transdução de Sinais/efeitos dos fármacos
12.
J Biol Chem ; 285(20): 14990-14998, 2010 May 14.
Artigo em Inglês | MEDLINE | ID: mdl-20299453

RESUMO

The idea of G protein-coupled receptors (GPCRs) coupling to G protein solely in their active form was abolished when it was found that certain ligands induce a G protein-coupled but inactive receptor form. This receptor form interferes with signaling of other receptors by sequestering G protein. However, the spontaneous existence of this receptor species has never been established. The aim of the present work was to evaluate the existence of the spontaneous conformation of the receptor inactively coupled to G protein able to interfere with the response of other GPCRs. According to the law of mass action, receptor overexpression should lead to increased amounts of all spontaneously occurring species. Based on this, we generated Chinese hamster ovary (CHO-K1)-derived cell lines expressing various amounts of the human histamine H2 receptor. In these systems, the signaling of other endogenously and transiently expressed GPCRs was attenuated proportionally to human H2 receptor expression levels. G protein transfection specifically reverted this attenuation, strongly suggesting hijacking of the G protein from a common pool. Similar attenuation effects were observed when the beta(2)- adrenergic receptor was overexpressed, suggesting that this is a more general phenomenon. Moreover, in human mammary MDA-MB-231 cells, a consistent increase in the response of other GPCRs was observed when endogenous expression of beta(2)-adrenergic receptor was knocked down using specific small interfering RNAs. Our findings show that GPCRs may interact with the signaling of other receptors by modulating the availability of the G protein and suggest the existence of GPCR spontaneous coupling to G proteins in an inactive form.


Assuntos
Receptores Acoplados a Proteínas G/metabolismo , Transdução de Sinais , Animais , Células CHO , Cricetinae , Cricetulus , Técnicas de Silenciamento de Genes , Humanos , Ensaio Radioligante , Receptores Acoplados a Proteínas G/genética
13.
Cells ; 10(11)2021 11 05.
Artigo em Inglês | MEDLINE | ID: mdl-34831249

RESUMO

Antihistamines and glucocorticoids (GCs) are often used together in the clinic to treat several inflammation-related situations. Although there is no rationale for this association, clinical practice has assumed that, due to their concomitant anti-inflammatory effects, there should be an intrinsic benefit to their co-administration. In this work, we evaluated the effects of the co-treatment of several antihistamines on dexamethasone-induced glucocorticoid receptor transcriptional activity on the expression of various inflammation-related genes in A549 and U937 cell lines. Our results show that all antihistamines potentiate GCs' anti-inflammatory effects, presenting ligand-, cell- and gene-dependent effects. Given that treatment with GCs has strong adverse effects, particularly on bone metabolism, we also examined the impact of antihistamine co-treatment on the expression of bone metabolism markers. Using MC3T3-E1 pre-osteoblastic cells, we observed that, though the antihistamine azelastine reduces the expression of dexamethasone-induced bone loss molecular markers, it potentiates osteoblast apoptosis. Our results suggest that the synergistic effect could contribute to reducing GC clinical doses, ineffective by itself but effective in combination with an antihistamine. This could result in a therapeutic advantage, as the addition of an antihistamine may reinforce the wanted effects of GCs, while related adverse effects could be diminished or at least mitigated. By modulating the patterns of gene activation/repression mediated by GR, antihistamines could enhance only the desired effects of GCs, allowing their effective dose to be reduced. Further research is needed to correctly determine the clinical scope, benefits, and potential risks of this therapeutic strategy.


Assuntos
Anti-Inflamatórios/farmacologia , Dexametasona/farmacologia , Regulação da Expressão Gênica , Antagonistas dos Receptores Histamínicos/farmacologia , Inflamação/genética , Receptores de Glucocorticoides/metabolismo , Animais , Biomarcadores/metabolismo , Osso e Ossos/efeitos dos fármacos , Osso e Ossos/metabolismo , Linhagem Celular , Proliferação de Células/efeitos dos fármacos , Regulação da Expressão Gênica/efeitos dos fármacos , Genes Reporter , Humanos , Camundongos , NF-kappa B/metabolismo , Osteoblastos/efeitos dos fármacos , Osteoblastos/metabolismo , Ftalazinas/farmacologia , Fator de Necrose Tumoral alfa/farmacologia
14.
Eur J Pharmacol ; 896: 173913, 2021 Apr 05.
Artigo em Inglês | MEDLINE | ID: mdl-33508282

RESUMO

Histamine H1 receptor ligands used clinically as antiallergics rank among the most widely prescribed and over-the-counter drugs in the world. They exert the therapeutic actions by blocking the effects of histamine, due to null or negative efficacy towards Gαq-phospholipase C (PLC)-inositol triphosphates (IP3)-Ca2+ and nuclear factor-kappa B cascades. However, there is no information regarding their ability to modulate other receptor responses. The aim of the present study was to investigate whether histamine H1 receptor ligands could display positive efficacy concerning receptor desensitization, internalization, signaling through Gαq independent pathways or even transcriptional regulation of proinflammatory genes. While diphenhydramine, triprolidine and chlorpheniramine activate ERK1/2 (extracellular signal-regulated kinase 1/2) pathway in A549 cells, pre-treatment with chlorpheniramine or triprolidine completely desensitize histamine H1 receptor mediated Ca2+ response, and both diphenhydramine and triprolidine lead to receptor internalization. Unlike histamine, histamine H1 receptor desensitization and internalization induced by antihistamines prove to be independent of G protein-coupled receptor kinase 2 (GRK2) phosphorylation. Also, unlike the reference agonist, the recovery of the number of cell-surface histamine H1 receptors is a consequence of de novo synthesis. On the other hand, all of the ligands lack efficacy regarding cyclooxygenase-2 (COX-2) and interleukin-8 (IL-8) mRNA regulation. However, a prolonged exposure with each of the antihistamines impaires the increase in COX-2 and IL-8 mRNA levels induced by histamine, even after ligand removal. Altogether, these findings demonstrate the biased nature of histamine H1 receptor ligands contributing to a more accurate classification, and providing evidence for a more rational and safe use of them.


Assuntos
MAP Quinases Reguladas por Sinal Extracelular/metabolismo , Agonistas dos Receptores Histamínicos/farmacologia , Antagonistas dos Receptores Histamínicos H1/farmacologia , Receptores Histamínicos H1/efeitos dos fármacos , Células A549 , Sinalização do Cálcio/efeitos dos fármacos , Ciclo-Oxigenase 2/genética , Ciclo-Oxigenase 2/metabolismo , Agonismo Inverso de Drogas , Ativação Enzimática , Quinase 2 de Receptor Acoplado a Proteína G/genética , Quinase 2 de Receptor Acoplado a Proteína G/metabolismo , Subunidades alfa Gq-G11 de Proteínas de Ligação ao GTP/metabolismo , Humanos , Mediadores da Inflamação/metabolismo , Inositol 1,4,5-Trifosfato/metabolismo , Interleucina-8/genética , Interleucina-8/metabolismo , Ligantes , Fosforilação , Transporte Proteico , Receptores Histamínicos H1/metabolismo , Fosfolipases Tipo C/metabolismo
15.
FEBS J ; 288(1): 229-243, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-32333821

RESUMO

Intracellular cAMP (i-cAMP) levels play an important role in acute myeloid leukemia (AML) cell proliferation and differentiation. Its levels are the result of cAMP production, degradation, and exclusion. We have previously described histamine H2 receptors and MRP4/ABCC4 as two potential targets for AML therapy. Acting through histamine H2 receptors, histamine increases cAMP production/synthesis, while MRP4/ABCC4 is responsible for the exclusion of this cyclic nucleotide. In this study, we show that histamine treatment induces MRP4/ABCC4 expression, augmenting cAMP efflux, and that histamine, in combination with MRP inhibitors, is able to reduce AML cell proliferation. Histamine, through histamine H2 receptor, increases i-cAMP levels and induces MRP4 transcript and protein levels in U937, KG1a, and HL-60 cells. Moreover, histamine induces MRP4 promoter activity in HEK293T cells transfected with histamine H2 receptor (HEK293T-H2 R). Our results support that the cAMP/Epac-PKA pathway, and not MEK/ERK nor PI3K/AKT signaling cascades, is involved in histamine-mediated upregulation of MRP4 levels. Finally, the addition of histamine potentiates the inhibition of U937, KG1a, and HL-60 cell proliferation induced by MRP4 inhibitors. Our data highlight that the use of a poly-pharmacological approach aimed at different molecular targets would be beneficial in AML treatment.


Assuntos
Proteínas Quinases Dependentes de AMP Cíclico/genética , AMP Cíclico/metabolismo , Fatores de Troca do Nucleotídeo Guanina/genética , Histamina/farmacologia , Proteínas Associadas à Resistência a Múltiplos Medicamentos/genética , Receptores Histamínicos H2/genética , Benzotiazóis/farmacologia , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Proteínas Quinases Dependentes de AMP Cíclico/metabolismo , Regulação Leucêmica da Expressão Gênica , Genes Reporter , Fatores de Troca do Nucleotídeo Guanina/metabolismo , Células HEK293 , Células HL-60 , Histamina/metabolismo , Humanos , Luciferases/genética , Luciferases/metabolismo , Terapia de Alvo Molecular/métodos , Proteínas Associadas à Resistência a Múltiplos Medicamentos/antagonistas & inibidores , Proteínas Associadas à Resistência a Múltiplos Medicamentos/metabolismo , Probenecid/farmacologia , Regiões Promotoras Genéticas , Propionatos/farmacologia , Quinolinas/farmacologia , Receptores Histamínicos H2/metabolismo , Transdução de Sinais , Triazóis/farmacologia , Células U937
16.
Front Pharmacol ; 11: 113, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32153413

RESUMO

G protein coupled receptor (GPCR) kinases (GRKs) are key regulators of GPCR signaling. Canonical mechanism of GPCR desensitization involves receptor phosphorylation by GRKs followed by arrestin recruitment and uncoupling from heterotrimeric G protein. Although ß3-adrenergic receptor (ß3AR) lacks phosphorylation sites by GRKs, agonist treatment proved to induce ß3AR desensitization in many cell types. Here we show that GRK2 mediates short-term desensitization of ß3AR by a phosphorylation independent mechanism but mediated by its domain homologous to the regulator of G protein signaling (RGS). HEK293T cells overexpressing human ß3AR presented a short-term desensitization of cAMP response stimulated by the ß3AR agonist, BRL37344, and not by forskolin. We found that ß3AR desensitization was higher in cells co-transfected with GRK2. Similarly, overexpression of the RGS homology domain but not kinase domain of GRK2 increased ß3AR desensitization. Consistently, stimulation of ß3AR increased interaction between GRK2 and Gαs subunit. Furthermore, in rat cardiomyocytes endogenously expressing ß3AR, transfection with dominant negative mutant of RH domain of GRK2 (GRK2/D110A) increased cAMP response to BRL37344 and inhibited receptor desensitization. We expect our study to be a starting point for more sophisticated characterization of the consequences of GRK2 mediated desensitization of the ß3AR in heart function and disease.

17.
Biochem Pharmacol ; 175: 113904, 2020 05.
Artigo em Inglês | MEDLINE | ID: mdl-32156659

RESUMO

Breast cancer is the most common cancer type in females worldwide. Environmental exposure to pesticides affecting hormonal homeostasis does not necessarily induce DNA mutations but may influence gene expression by disturbances in epigenetic regulation. Expression of long interspersed nuclear element-1 (LINE-1) has been associated with tumorigenesis in several cancers. In nearly all somatic cells, LINE-1 is silenced by DNA methylation in the 5́'UTR and reactivated during disease initiation and/or progression. Strong ligands of aryl hydrocarbon receptor (AhR) activate LINE-1 through the transforming growth factor-ß1 (TGF-ß1)/Smad pathway. Hexachlorobenzene (HCB) and chlorpyrifos (CPF), both weak AhR ligands, promote cell proliferation and migration in breast cancer cells, as well as tumor growth in rat models. In this context, our aim was to examine the effect of these pesticides on LINE-1 expression and ORF1p localization in the triple-negative breast cancer cell line MDA-MB-231 and the non-tumorigenic epithelial breast cell line NMuMG, and to evaluate the role of TGF-ß1 and AhR pathways. Results show that 0.5 µM CPF and 0.005 µM HCB increased LINE-1 mRNA expression through Smad and AhR signaling in MDA-MB-231. In addition, the methylation of the first sites in 5́'UTR of LINE-1 was reduced by pesticide exposure, although the farther sites remained unaffected. Pesticides modulated ORF1p localization in MDA-MB-231: 0.005 µM HCB and 50 µM CPF increased nuclear translocation, while both induced cytoplasmic retention at 0.5 and 5 µM. Moreover, both stimulated double-strand breaks, enhancing H2AX phosphorylation, coincidentally with ORF1p nuclear localization. In NMuMG similar results were observed, since they heighten LINE-1 mRNA levels. CPF effect was through AhR and TGF-ß1 signaling, whereas HCB action depends only of AhR. In addition, both pesticides increase ORF1p expression and nuclear localization. Our results provide experimental evidence that HCB and CPF exposure modify LINE-1 methylation levels and induce LINE-1 reactivation, suggesting that epigenetic mechanisms could contribute to pesticide-induced breast cancer progression.


Assuntos
Fatores de Transcrição Hélice-Alça-Hélice Básicos/metabolismo , Células Epiteliais/metabolismo , Elementos Nucleotídeos Longos e Dispersos/fisiologia , Receptores de Hidrocarboneto Arílico/metabolismo , Retroelementos/fisiologia , Neoplasias de Mama Triplo Negativas/metabolismo , Linhagem Celular Tumoral , Relação Dose-Resposta a Droga , Células Epiteliais/efeitos dos fármacos , Células Epiteliais/patologia , Feminino , Hexaclorobenzeno/metabolismo , Hexaclorobenzeno/toxicidade , Humanos , Ligantes , Elementos Nucleotídeos Longos e Dispersos/efeitos dos fármacos , Retroelementos/efeitos dos fármacos , Neoplasias de Mama Triplo Negativas/patologia
18.
Pharmacol Res Perspect ; 7(6): e00530, 2019 12.
Artigo em Inglês | MEDLINE | ID: mdl-31859461

RESUMO

Antihistamines and glucocorticoids (GCs) are often used together in the clinic, in several inflammatory-related situations. Even though there is no clear rationale for this drug association, the clinical practice is based on the assumption that due to their concomitant antiinflammatory effects, there should be an intrinsic benefit in their coadministration. Our group has studied the molecular interaction between the histamine H1 receptor and the glucocorticoid receptor (GR) signaling pathways, showing an enhancing effect on GC-induced GR transcriptional activity induced by antihistamines. We hypothesize that the existence of this synergistic effect could contribute in reducing the GCs clinical doses, ineffective by itself but effective in combination with an antihistamine. This could result in a therapeutic advantage as the GC-desired effects may be reinforced by the addition of an antihistamine and, as a consequence of the dose reduction, GC-related adverse effects could be reduced or at least mitigated. Here we discuss the potential therapeutic applications of this cotreatment seeking to evaluate its usefulness, especially in inflammatory-related conditions.


Assuntos
Glucocorticoides/farmacologia , Antagonistas dos Receptores Histamínicos/farmacologia , Inflamação/tratamento farmacológico , Transdução de Sinais/efeitos dos fármacos , Sinergismo Farmacológico , Quimioterapia Combinada/métodos , Glucocorticoides/uso terapêutico , Antagonistas dos Receptores Histamínicos/uso terapêutico , Humanos , Inflamação/imunologia , Receptores de Glucocorticoides/metabolismo , Receptores Histamínicos H1/metabolismo , Transdução de Sinais/imunologia
19.
Front Pharmacol ; 10: 214, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30930776

RESUMO

Regulatory factors that control gene transcription in multicellular organisms are assembled in multicomponent complexes by combinatorial interactions. In this context, nuclear receptors provide well-characterized and physiologically relevant systems to study ligand-induced transcription resulting from the integration of cellular and genomic information in a cell- and gene-specific manner. Here, we developed a mathematical model describing the interactions between the glucocorticoid receptor (GR) and other components of a multifactorial regulatory complex controlling the transcription of GR-target genes, such as coregulator peptides. We support the validity of the model in relation to gene-specific GR transactivation with gene transcription data from A549 cells and in vitro real time quantification of coregulator-GR interactions. The model accurately describes and helps to interpret ligand-specific and gene-specific transcriptional regulation by the GR. The comprehensive character of the model allows future insight into the function and relative contribution of the molecular species proposed in ligand- and gene-specific transcriptional regulation.

20.
Pharmacol Res Perspect ; 7(6): e00531, 2019 12.
Artigo em Inglês | MEDLINE | ID: mdl-31687162

RESUMO

Glucocorticoids are among the most effective drugs to treat asthma. However, the severe adverse effects associated generate the need for its therapeutic optimization. Conversely, though histamine is undoubtedly related to asthma development, there is a lack of efficacy of antihistamines in controlling its symptoms, which prevents their clinical application. We have reported that antihistamines potentiate glucocorticoids' responses in vitro and recent observations have indicated that the coadministration of an antihistamine and a synthetic glucocorticoid has synergistic effects on a murine model of allergic rhinitis. Here, the aim of this work is to establish if this therapeutic combination could be beneficial in a murine model of asthma. We used an allergen-induced model of asthma (employing ovalbumin) to evaluate the effects of the synthetic glucocorticoid dexamethasone combined with the antihistamine azelastine. Our results indicate that the cotreatment with azelastine and a suboptimal dose of dexamethasone can improve allergic lung inflammation as shown by a decrease in eosinophils in bronchoalveolar lavage, fewer peribronchial and perivascular infiltrates, and mucin-producing cells. In addition, serum levels of allergen-specific IgE and IgG1 were also reduced, as well as the expression of lung inflammatory-related genes IL-4, IL-5, Muc5AC, and Arginase I. The potentiation of dexamethasone effects by azelastine could allow to reduce the effective glucocorticoid dose needed to achieve a therapeutic effect. These findings provide first new insights into the potential benefits of glucocorticoids and antihistamines combination for the treatment of asthma and grants further research to evaluate this approach in other related inflammatory conditions.


Assuntos
Antiasmáticos/farmacologia , Asma/tratamento farmacológico , Dexametasona/farmacologia , Ftalazinas/farmacologia , Administração Intranasal , Animais , Antiasmáticos/uso terapêutico , Asma/sangue , Asma/imunologia , Asma/patologia , Dexametasona/uso terapêutico , Modelos Animais de Doenças , Relação Dose-Resposta a Droga , Sinergismo Farmacológico , Quimioterapia Combinada/métodos , Feminino , Glucocorticoides/farmacologia , Glucocorticoides/uso terapêutico , Células HEK293 , Antagonistas não Sedativos dos Receptores H1 da Histamina/farmacologia , Antagonistas não Sedativos dos Receptores H1 da Histamina/uso terapêutico , Humanos , Pulmão/efeitos dos fármacos , Pulmão/imunologia , Pulmão/patologia , Camundongos , Ovalbumina/imunologia , Ftalazinas/uso terapêutico , Receptores de Glucocorticoides/agonistas , Receptores de Glucocorticoides/metabolismo , Ativação Transcricional/efeitos dos fármacos , Ativação Transcricional/imunologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA