Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Foot Ankle Orthop ; 9(1): 24730114241231245, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38410138

RESUMO

Background: Symptomatic flexible flatfoot causes alterations in gait, but exactly how this condition affects the intersegmental motion of the foot during the gait cycle remains unclear. Previous studies have examined the kinematics, yielding inconsistent findings. Therefore, the objective of this study was to investigate how flexible flatfoot deformity, defined as Johnson and Strom classification staging II, affects the intersegmental motion of the foot during fast walking based on a comparison with the matched control group. Methods: Eleven participants with symptomatic flexible flatfoot and 11 healthy matched control participants were recruited using a foot screening protocol incorporated through a foot physical examinations and radiographic measurements. All demographic characteristics exhibited comparable profiles between the groups. During controlled walking, kinematic outcomes pertaining to the hallux, hindfoot, forefoot, and tibia were collected using the multisegmental Oxford Foot Model. Results: All spatiotemporal parameters were comparable between the groups. In comparison to the control group, individuals with symptomatic flexible flatfoot demonstrated increased hallux valgus and plantarflexion, increased forefoot abduction, heightened hindfoot eversion, and internal rotation. Notably, no significant major differences were observed in the tibia motion segment. Further, significant correlations were identified between static foot measurements and the extent of the maximum deviation observed during dynamic kinematic assessments. Conclusion: Compared with age- and gender-matched controls, participants with symptomatic flexible flatfoot exhibited significant gait pattern deviations. A significant correlation also exists between static foot deformity measurements and dynamic kinematic deviations. Collectively, these findings have implications for developing targeted therapeutic interventions to address flexible flatfoot. Level of evidence: Level III, diagnostic study.

2.
Med Devices (Auckl) ; 17: 261-269, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39050910

RESUMO

Background: The assessment of cervical spine motion is critical for out-of-hospital patients who suffer traumatic spinal cord injuries, given the profound implications such injuries have on individual well-being and broader public health concerns. 3D Optoelectronic systems (BTS SmartDX) are standard devices for motion measurement, but their price, complexity, and size prevent them from being used outside of designated laboratories. This study was designed to evaluate the accuracy and reliability of an inertial measurement unit (IMU) in gauging cervical spine motion among healthy volunteers, using a 3D optoelectronic motion capture system as a reference. Methods: Twelve healthy volunteers participated in the study. They underwent lifting, transferring, and tilting simulations using a long spinal board, a Sked stretcher, and a vacuum mattress. During these simulations, cervical spine angular movements-including flexion-extension, axial rotation, and lateral flexion-were concurrently measured using the IMU and an optoelectronic device. We employed the Wilcoxon signed-rank test and the Bland-Altman plot to assess reliability and validity. Results: A single statistically significant difference was observed between the two devices in the flexion-extension plane. The mean differences across all angular planes ranged from -1.129° to 1.053°, with the most pronounced difference noted in the lateral flexion plane. Ninety-five percent of the angular motion disparities ascertained by the SmartDX and IMU were less than 7.873° for the lateral flexion plane, 11.143° for the flexion-extension plane, and 25.382° for the axial rotation plane. Conclusion: The IMU device exhibited robust validity when assessing the angular motion of the cervical spine in the axial rotation plane and demonstrated commendable validity in both the lateral flexion and flexion-extension planes.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA