Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 100
Filtrar
Mais filtros

Intervalo de ano de publicação
1.
Development ; 148(10)2021 05 15.
Artigo em Inglês | MEDLINE | ID: mdl-34042968

RESUMO

During development, gene expression is tightly controlled to facilitate the generation of the diverse cell types that form the central nervous system. Brahma-related gene 1 (Brg1, also known as Smarca4) is the catalytic subunit of the SWItch/sucrose nonfermentable (SWI/SNF) chromatin remodeling complex that regulates transcription. We investigated the role of Brg1 between embryonic day 6.5 (E6.5) and E14.5 in Sox2-positive neural stem cells (NSCs). Being without major consequences at E6.5 and E14.5, loss of Brg1 between E7.5 and E12.5 resulted in the formation of rosette-like structures in the subventricular zone, as well as morphological alterations and enlargement of neural retina (NR). Additionally, Brg1-deficient cells showed decreased survival in vitro and in vivo. Furthermore, we uncovered distinct changes in gene expression upon Brg1 loss, pointing towards impaired neuron functions, especially those involving synaptic communication and altered composition of the extracellular matrix. Comparison with mice deficient for integrase interactor 1 (Ini1, also known as Smarcb1) revealed that the enlarged NR was Brg1 specific and was not caused by a general dysfunction of the SWI/SNF complex. These results suggest a crucial role for Brg1 in NSCs during brain and eye development.


Assuntos
Encéfalo/embriologia , DNA Helicases/genética , Olho/embriologia , Regulação da Expressão Gênica no Desenvolvimento/genética , Proteínas Nucleares/genética , Proteína SMARCB1/genética , Fatores de Transcrição/genética , Animais , Apoptose/genética , DNA Helicases/metabolismo , Matriz Extracelular/genética , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Células-Tronco Neurais/citologia , Proteínas Nucleares/metabolismo , Fatores de Transcrição/metabolismo
2.
Genet Mol Biol ; 47(Suppl 1): e20230317, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38829285

RESUMO

In the search for alternatives to overcome the challenge imposed by drug resistance development in cancer treatment, the modulation of autophagy has emerged as a promising alternative that has achieved good results in clinical trials. Nevertheless, most of these studies have overlooked a novel and selective type of autophagy: chaperone-mediated autophagy (CMA). Following its discovery, research into CMA's contribution to tumor progression has accelerated rapidly. Therefore, we now understand that stress conditions are the primary signal responsible for modulating CMA in cancer cells. In turn, the degradation of proteins by CMA can offer important advantages for tumorigenesis, since tumor suppressor proteins are CMA targets. Such mutual interaction between the tumor microenvironment and CMA also plays a crucial part in establishing therapy resistance, making this discussion the focus of the present review. Thus, we highlight how suppression of LAMP2A can enhance the sensitivity of cancer cells to several drugs, just as downregulation of CMA activity can lead to resistance in certain cases. Given this panorama, it is important to identify selective modulators of CMA to enhance the therapeutic response.

3.
Cell Mol Neurobiol ; 43(7): 3511-3526, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37219662

RESUMO

The BAF (BRG1/BRM-associated factor) chromatin remodelling complex is essential for the regulation of DNA accessibility and gene expression during neuronal differentiation. Mutations of its core subunit SMARCB1 result in a broad spectrum of pathologies, including aggressive rhabdoid tumours or neurodevelopmental disorders. Other mouse models have addressed the influence of a homo- or heterozygous loss of Smarcb1, yet the impact of specific non-truncating mutations remains poorly understood. Here, we have established a new mouse model for the carboxy-terminal Smarcb1 c.1148del point mutation, which leads to the synthesis of elongated SMARCB1 proteins. We have investigated its impact on brain development in mice using magnetic resonance imaging, histology, and single-cell RNA sequencing. During adolescence, Smarcb11148del/1148del mice demonstrated rather slow weight gain and frequently developed hydrocephalus including enlarged lateral ventricles. In embryonic and neonatal stages, mutant brains did not differ anatomically and histologically from wild-type controls. Single-cell RNA sequencing of brains from newborn mutant mice revealed that a complete brain including all cell types of a physiologic mouse brain is formed despite the SMARCB1 mutation. However, neuronal signalling appeared disturbed in newborn mice, since genes of the AP-1 transcription factor family and neurite outgrowth-related transcripts were downregulated. These findings support the important role of SMARCB1 in neurodevelopment and extend the knowledge of different Smarcb1 mutations and their associated phenotypes.


Assuntos
Hidrocefalia , Fator de Transcrição AP-1 , Animais , Camundongos , Hidrocefalia/genética , Mutação/genética , Mutação Puntual/genética , Transdução de Sinais , Fator de Transcrição AP-1/genética
4.
Environ Res ; 205: 112451, 2022 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-34848209

RESUMO

Measurements of CO2 and counting of occupants were carried out in 37 public bus trips during commuting rush hours in Barcelona (NE Spain) with the aim of evaluating parameters governing ventilation inside the vehicles and proposing actions to improve it. The results show that CO2 concentrations (1039 and 934 ± 386 ppm, as average and median, during rush hours but with average reduced occupancy due to the fair to be infected by SARS-CoV-2 during the measurement period, and measured in the middle of the busses) are in the lower range of values recorded in the literature for public buses, however an improvement in ventilation is required in a significant proportion of the journeys. Thus, we found better ventilation in the older Euro 3+ (retrofitted with filter traps and selective catalytic reduction) and Euro 5 buses (average 918 ± 257 ppm) than in the hermetically closed new Euro 6 ones (1111 ± 432 ppm). The opening of the windows in the older buses yielded higher ventilation rates (778 ± 432 ppm). The opening of all doors at all stops increases the ventilation by causing a fall in concentrations of 200-350 ppm below inter-stop concentrations, with this effect typically lasting 40-50 s in the hermetically closed new Euro 6 hybrid buses. Based on these results a number of recommendations are offered in order to improve ventilation, including measurement of CO2 and occupancy, and installation of ventilation fans on the top of the hermetically closed new buses, introducing outdoor air when a given concentration threshold is exceeded. In these cases, a CO2 sensor installed in the outdoor air intake is also recommended to take into account external CO2 contributions.


Assuntos
Poluição do Ar em Ambientes Fechados , COVID-19 , Poluição do Ar em Ambientes Fechados/análise , Dióxido de Carbono/análise , Humanos , Veículos Automotores , SARS-CoV-2 , Meios de Transporte , Ventilação
5.
Nucleic Acids Res ; 48(4): 1941-1953, 2020 02 28.
Artigo em Inglês | MEDLINE | ID: mdl-31853541

RESUMO

UVA-induced mutagenesis was investigated in human pol eta-deficient (XP-V) cells through whole-exome sequencing. In UVA-irradiated cells, the increase in the mutation frequency in deficient cells included a remarkable contribution of C>T transitions, mainly at potential pyrimidine dimer sites. A strong contribution of C>A transversions, potentially due to oxidized bases, was also observed in non-irradiated XP-V cells, indicating that basal mutagenesis caused by oxidative stress may be related to internal tumours in XP-V patients. The low levels of mutations involving T induced by UVA indicate that pol eta is not responsible for correctly replicating T-containing pyrimidine dimers, a phenomenon known as the 'A-rule'. Moreover, the mutation signature profile of UVA-irradiated XP-V cells is highly similar to the human skin cancer profile, revealing how studies involving cells deficient in DNA damage processing may be useful to understand the mechanisms of environmentally induced carcinogenesis.


Assuntos
Mutagênese/genética , Estresse Oxidativo/genética , Dímeros de Pirimidina/genética , Xeroderma Pigmentoso/genética , Linhagem Celular , Dano ao DNA/efeitos da radiação , Reparo do DNA/efeitos da radiação , Replicação do DNA/efeitos da radiação , Humanos , Mutagênese/efeitos da radiação , Mutação/genética , Mutação/efeitos da radiação , Estresse Oxidativo/efeitos da radiação , Dímeros de Pirimidina/efeitos da radiação , Raios Ultravioleta , Sequenciamento do Exoma , Xeroderma Pigmentoso/etiologia
6.
Acta Neuropathol ; 139(5): 913-936, 2020 05.
Artigo em Inglês | MEDLINE | ID: mdl-31848709

RESUMO

Atypical teratoid/rhabdoid tumors (ATRT) are known for their heterogeneity concerning pathophysiology and outcome. However, predictive factors within distinct subgroups still need to be uncovered. Using multiplex immunofluorescent staining and single-cell RNA sequencing we unraveled distinct compositions of the immunological tumor microenvironment (TME) across ATRT subgroups. CD68+ cells predominantly infiltrate ATRT-SHH and ATRT-MYC and are a negative prognostic factor for patients' survival. Within the murine ATRT-MYC and ATRT-SHH TME, Cd68+ macrophages are core to intercellular communication with tumor cells. In ATRT-MYC distinct tumor cell phenotypes express macrophage marker genes. These cells are involved in the acquisition of chemotherapy resistance in our relapse xenograft mouse model. In conclusion, the tumor cell-macrophage interaction contributes to ATRT-MYC heterogeneity and potentially to tumor recurrence.


Assuntos
Resistencia a Medicamentos Antineoplásicos/fisiologia , Macrófagos/patologia , Recidiva Local de Neoplasia/patologia , Microambiente Tumoral/fisiologia , Animais , Biomarcadores Tumorais/genética , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/metabolismo , Neoplasias do Sistema Nervoso Central/metabolismo , Neoplasias do Sistema Nervoso Central/patologia , Feminino , Humanos , Masculino , Camundongos Transgênicos , Tumor Rabdoide/genética
7.
Genet Mol Biol ; 43(1 suppl. 1): e20190104, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32141475

RESUMO

Base and nucleotide excision repair (BER and NER) pathways are normally associated with removal of specific types of DNA damage: small base modifications (such as those induced by DNA oxidation) and bulky DNA lesions (such as those induced by ultraviolet or chemical carcinogens), respectively. However, growing evidence indicates that this scenario is much more complex and these pathways exchange proteins and cooperate with each other in the repair of specific lesions. In this review, we highlight studies discussing the involvement of NER in the repair of DNA damage induced by oxidative stress, and BER participating in the removal of bulky adducts on DNA. Adding to this complexity, UVA light experiments revealed that oxidative stress also causes protein oxidation, directly affecting proteins involved in both NER and BER. This reduces the cell's ability to repair DNA damage with deleterious implications to the cells, such as mutagenesis and cell death, and to the organisms, such as cancer and aging. Finally, an interactome of NER and BER proteins is presented, showing the strong connection between these pathways, indicating that further investigation may reveal new functions shared by them, and their cooperation in maintaining genome stability.

8.
Chemistry ; 25(57): 13189-13196, 2019 Oct 11.
Artigo em Inglês | MEDLINE | ID: mdl-31336004

RESUMO

Previous results revealed that arsenic trioxide might be used as promising therapeutic agent for the treatment of some solid tumours as atypical teratoid rhabdoid tumours (ATRT). However, in order to become an approved drug for solid tumour treatment, the active formulation has to get more efficient and feasible-but at the same time less toxic. One of the possibilities to achieve this dichotomy is to use nanomedicine tools. Herein, we report on the Zn-based metal-organic framework ZIF-8 (Zeolitic Imidazolate Framework-8) which turned out to be a promising candidate for the delivery of AsIII species. It conjointly features a high drug loading capacity and a prominent pH-triggered release behaviour. AsIII -loaded ZIF-8 nanoparticles coated and non-coated with polyethylene glycol were studied by XRPD, IR, Raman, TGA, TEM, EDX, CHN-elemental analysis, sorption analysis and ICP-OES, and their cytotoxicity was evaluated in vitro.


Assuntos
Trióxido de Arsênio/química , Nanopartículas/química , Neoplasias/fisiopatologia , Polietilenoglicóis/química , Zeolitas/química , Sistemas de Liberação de Medicamentos , Concentração de Íons de Hidrogênio
9.
Mutagenesis ; 34(4): 341-354, 2019 12 19.
Artigo em Inglês | MEDLINE | ID: mdl-31348825

RESUMO

Nucleotide excision repair (NER) is a conserved, flexible mechanism responsible for the removal of bulky, helix-distorting DNA lesions, like ultraviolet damage or cisplatin adducts, but its role in the repair of lesions generated by oxidative stress is still not clear. The helicase XPD/ERCC2, one of the two helicases of the transcription complex IIH, together with XPB, participates both in NER and in RNA pol II-driven transcription. In this work, we investigated the responses of distinct XPD-mutated cell lines to the oxidative stress generated by photoactivated methylene blue (MB) and KBrO3 treatments. The studied cells are derived from patients with XPD mutations but expressing different clinical phenotypes, including xeroderma pigmentosum (XP), XP and Cockayne syndrome (XP-D/CS) and trichothiodystrophy (TTD). We show by different approaches that all XPD-mutated cell lines tested were sensitive to oxidative stress, with those from TTD patients being the most sensitive. Host cell reactivation (HCR) assays showed that XP-D/CS and TTD cells have severely impaired repair capacity of oxidised lesions in plasmid DNA, and alkaline comet assays demonstrated the induction of significantly higher amounts of DNA strand breaks after treatment with photoactivated MB in these cells compared to wild-type cells. All XPD-mutated cells presented strong S/G2 arrest and persistent γ-H2AX staining after photoactivated MB treatment. Taken together, these results indicate that XPD participates in the repair of lesions induced by the redox process, and that XPD mutations lead to differences in the response to oxidatively induced damage.


Assuntos
Mutação , Estresse Oxidativo , Proteína Grupo D do Xeroderma Pigmentoso/genética , Biomarcadores , Pontos de Checagem do Ciclo Celular/efeitos dos fármacos , Pontos de Checagem do Ciclo Celular/genética , Linhagem Celular , Sobrevivência Celular/efeitos dos fármacos , Sobrevivência Celular/genética , Ensaio Cometa , Dano ao DNA , Reparo do DNA , Relação Dose-Resposta à Radiação , Fibroblastos/metabolismo , Citometria de Fluxo , Humanos , Mutação/efeitos dos fármacos , Mutação/efeitos da radiação , Estresse Oxidativo/efeitos dos fármacos , Estresse Oxidativo/efeitos da radiação , Raios Ultravioleta
10.
Tumour Biol ; 40(11): 1010428318810059, 2018 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-30419802

RESUMO

A complex network of chemokines can influence cancer progression with the recruitment and activation of hematopoietic cells, including macrophages to the supporting tumor stroma promoting carcinogenesis and metastasis. The aim of this study was to investigate the relation between tissue and plasma chemokine levels involved in macrophage recruitment with tumor-associated macrophage profile markers and clinicopathological features such as tumor-node-metastases stage, desmoplasia, tumor necrosis factor-α, and vascular endothelial growth factor plasma content. Plasma and tumor/healthy mucosa were obtained from Chilean patients undergoing colon cancer surgery. Chemokines were evaluated from tissue lysates (CCL2, CCL3, CCL4, CCL5, and CX3CL1) by Luminex. Statistical analysis was performed using Wilcoxon match-paired test ( p < 0.05). Macrophage markers (CD68, CD163, and iNOS) were evaluated by immunohistochemistry samples derived from colorectal cancer patients. Correlation analysis between chemokines and macrophage markers and clinicopathological features were performed using Spearman's test. Plasmatic levels of chemokines and inflammatory mediators' vascular endothelial growth factor and tumor necrosis factor-α were evaluated by Luminex. Tumor levels of CCL2 (mean ± standard deviation = 530.1 ± 613.9 pg/mg), CCL3 (102.7 ± 106.0 pg/mg), and CCL4 (64.98 ± 48.09 pg/mg) were higher than those found in healthy tissue (182.1 ± 116.5, 26.79 ± 22.40, and 27.06 ± 23.69 pg/mg, respectively p < 0.05). The tumor characterization allowed us to identify a positive correlation between CCL4 and the pro-tumor macrophages marker CD163 ( p = 0.0443), and a negative correlation of iNOS with desmoplastic reaction ( p = 0.0467). Moreover, we identified that tumors with immature desmoplasia have a higher CD163 density compared to those with a mature/intermediated stromal tissue ( p = 0.0288). Plasmatic CCL4 has shown a positive correlation with inflammatory mediators (tumor necrosis factor-α and vascular endothelial growth factor) that have previously been associated with poor prognosis in patients. In conclusion High expression of CCL4 in colon cancer could induce the infiltration of tumor-associated macrophages and specifically a pro-tumor macrophage profile (CD163+ cells). Moreover, plasmatic chemokines could be considered inflammatory mediators associated to CRC progression as well as tumor necrosis factor-α and vascular endothelial growth factor. These data reinforce the idea of chemokines as potential therapeutic targets or biomarker in CRC.


Assuntos
Biomarcadores Tumorais/metabolismo , Quimiocina CCL2/metabolismo , Quimiocina CCL3/metabolismo , Quimiocina CCL4/metabolismo , Neoplasias Colorretais/patologia , Macrófagos/patologia , Microambiente Tumoral , Adulto , Idoso , Idoso de 80 Anos ou mais , Estudos de Casos e Controles , Neoplasias Colorretais/metabolismo , Feminino , Seguimentos , Humanos , Macrófagos/metabolismo , Masculino , Pessoa de Meia-Idade , Prognóstico
11.
Int J Mol Sci ; 18(7)2017 Jul 16.
Artigo em Inglês | MEDLINE | ID: mdl-28714904

RESUMO

Rhabdoid tumors (RT) are malignant neoplasms of early childhood. Despite intensive therapy, survival is poor and new treatment approaches are required. The only recurrent mutations in these tumors affect SMARCB1 and less commonly SMARCA4, both subunits of the chromatin remodeling complex SWItch/Sucrose Non-Fermentable (SWI/SNF). Loss of these two core subunits alters the function of the SWI/SNF complex, resulting in tumor development. We hypothesized that inhibition of aberrant SWI/SNF function by selective blockade of the BRD9 subunit of the SWI/SNF complex would reduce tumor cell proliferation. The cytotoxic and anti-proliferative effects of two specific chemical probes (I-BRD9 and BI-9564) which target the bromodomain of SWI/SNF protein BRD9 were evaluated in 5 RT cell lines. Combinatorial effects of I-BRD9 and cytotoxic drugs on cell proliferation were evaluated by cytotoxicity assays. Single compound treatment of RT cells with I-BRD9 and BI-9564 resulted in decreased cell proliferation, G1-arrest and apoptosis. Combined treatment of doxorubicin or carboplatin with I-BRD9 resulted in additive to synergistic inhibitory effects on cell proliferation. In contrast, the combination of I-BRD9 with vincristine demonstrated the antagonistic effects of these two compounds. We conclude that the BRD9 bromodomain is an attractive target for novel therapies in this cancer.


Assuntos
Citostáticos/uso terapêutico , Tumor Rabdoide/tratamento farmacológico , Benzilaminas , Carboplatina/farmacologia , Carboplatina/uso terapêutico , Ciclo Celular/efeitos dos fármacos , Pontos de Checagem do Ciclo Celular/efeitos dos fármacos , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Doxorrubicina/farmacologia , Doxorrubicina/uso terapêutico , Sinergismo Farmacológico , Humanos , Concentração Inibidora 50 , Naftiridinas , Tumor Rabdoide/patologia , Bibliotecas de Moléculas Pequenas/farmacologia , Bibliotecas de Moléculas Pequenas/uso terapêutico , Vincristina/farmacologia , Vincristina/uso terapêutico
12.
J Neurosci ; 34(40): 13486-91, 2014 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-25274825

RESUMO

SMARCA4 (BRG1) and SMARCB1 (INI1) are tumor suppressor genes that are crucially involved in the formation of malignant rhabdoid tumors, such as atypical teratoid/rhabdoid tumor (AT/RT). AT/RTs typically affect infants and occur at various sites of the CNS with a particular frequency in the cerebellum. Here, granule neurons and their progenitors represent the most abundant cell type and are known to give rise to a subset of medulloblastoma, a histologically similar embryonal brain tumor. To test how Smarc proteins influence the development of granule neurons and whether this population may serve as cellular origin for AT/RTs, we specifically deleted Smarca4 and Smarcb1 in cerebellar granule cell precursors. Respective mutant mice displayed severe ataxia and motor coordination deficits, but did not develop any tumors. In fact, they suffered from a severely hypoplastic cerebellum due to a significant inhibition of granule neuron precursor proliferation. Molecularly, this was accompanied by an enhanced activity of Wnt/ß-catenin signaling that, by itself, is known to cause a nearly identical phenotype. We further used an hGFAP-cre allele, which deleted Smarcb1 much earlier and in a wider neural precursor population, but we still did not detect any tumor formation in the CNS. In summary, our results emphasize cell-type-dependent roles of Smarc proteins and argue against cerebellar granule cells and other progeny of hGFAP-positive neural precursors as the cellular origin for AT/RTs.


Assuntos
Cerebelo/crescimento & desenvolvimento , Proteínas Cromossômicas não Histona/deficiência , DNA Helicases/deficiência , Regulação da Expressão Gênica no Desenvolvimento/genética , Proteínas Nucleares/deficiência , Fatores de Transcrição/deficiência , Fatores Etários , Animais , Fatores de Transcrição Hélice-Alça-Hélice Básicos/genética , Fatores de Transcrição Hélice-Alça-Hélice Básicos/metabolismo , Proliferação de Células/genética , Células Cultivadas , Cerebelo/citologia , Proteínas Cromossômicas não Histona/genética , DNA Helicases/genética , Citometria de Fluxo , Proteína Glial Fibrilar Ácida/metabolismo , Proteínas de Fluorescência Verde/genética , Proteínas de Fluorescência Verde/metabolismo , Camundongos , Camundongos Transgênicos , Mutação/genética , Células-Tronco Neurais/fisiologia , Neurônios/metabolismo , Proteínas Nucleares/genética , Fosfopiruvato Hidratase/metabolismo , Proteína SMARCB1 , Transdução de Sinais/genética , Fatores de Transcrição/genética , Proteínas Wnt/metabolismo
13.
Int J Cancer ; 135(4): 989-95, 2014 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-24420698

RESUMO

Rhabdoid tumors are highly aggressive tumors occurring in infants and very young children. Despite multimodal and intensive therapy prognosis remains poor. Molecular analyses have uncovered several deregulated pathways, among them the CDK4/6-Rb-, the WNT- and the Sonic hedgehog (SHH) pathways. The SHH pathway is activated in rhabdoid tumors by GLI1 overexpression. Here, we demonstrate that arsenic trioxide (ATO) inhibits tumor cell growth of malignant rhabdoid tumors in vitro and in a mouse xenograft model by suppressing Gli1. Our data uncover ATO as a promising therapeutic approach to improve prognosis for rhabdoid tumor patients.


Assuntos
Antineoplásicos/farmacologia , Arsenicais/farmacologia , Regulação Neoplásica da Expressão Gênica , Fatores de Transcrição Kruppel-Like/metabolismo , Óxidos/farmacologia , Tumor Rabdoide/tratamento farmacológico , Fatores de Transcrição/metabolismo , Animais , Apoptose , Trióxido de Arsênio , Ciclo Celular , Proliferação de Células , Biologia Computacional , Perfilação da Expressão Gênica , Regulação da Expressão Gênica , Proteínas Hedgehog/metabolismo , Humanos , Camundongos , Camundongos SCID , Transplante de Neoplasias , Prognóstico , Transdução de Sinais , Proteína GLI1 em Dedos de Zinco
14.
Biochem Pharmacol ; : 116316, 2024 May 24.
Artigo em Inglês | MEDLINE | ID: mdl-38797267

RESUMO

Caspase recruitment domain (CARD)-containing protein 14 (CARD14) is an intracellular protein that mediates nuclear factor-kappa B (NF-ĸB) signaling and proinflammatory gene expression in skin keratinocytes. Several hyperactivating CARD14 mutations have been associated with psoriasis and other inflammatory skin diseases. CARD14-induced NF-ĸB signaling is dependent on the formation of a CARD14-BCL10-MALT1 (CBM) signaling complex, but upstream receptors and molecular mechanisms that activate and regulate CARD14 signaling are still largely unclear. Using unbiased affinity purification and mass spectrometry (AP-MS) screening, we discover polo-like kinase 1 (PLK1) as a novel CARD14-binding protein. CARD14-PLK1 binding is independent of the CARD14 CARD domain but involves a consensus phospho-dependent PLK1-binding motif in the CARD14 linker region (LR). Expression of the psoriasis-associated CARD14(E138A) variant in human keratinocytes induces the recruitment of PLK1 to CARD14-containing signalosomes in interphase cells, but does not affect the specific location of PLK1 in mitotic cells. Finally, disruption of the PLK1-binding motif in CARD14(E138A) increases CARD14-induced proinflammatory signaling and gene expression. Together, our data identify PLK1 as a novel CARD14-binding protein and indicate a negative regulatory role for PLK1 in CARD14 signaling.

15.
J Mater Chem B ; 12(20): 4945-4961, 2024 May 22.
Artigo em Inglês | MEDLINE | ID: mdl-38685886

RESUMO

Self-activated luminescent calcium phosphate (CaP) nanoparticles, including hydroxyapatite (HA) and amorphous calcium phosphate (ACP), are promising for bioimaging and theragnostic applications in nanomedicine, eliminating the need for activator ions or fluorophores. In this study, we developed luminescent and stable citrate-functionalized carbonated ACP nanoparticles for bioimaging purposes. Our findings revealed that both the CO32- content and the posterior heating step at 400 °C significantly influenced the composition and the structural ordering of the chemically precipitated ACP nanoparticles, impacting the intensity, broadness, and position of the defect-related photoluminescence (PL) emission band. The heat-treated samples also exhibited excitation-dependent PL under excitation wavelengths typically used in bioimaging (λexc = 405, 488, 561, and 640 nm). Citrate functionalization improved the PL intensity of the nanoparticles by inhibiting non-radiative deactivation mechanisms in solution. Additionally, it resulted in an increased colloidal stability and reduced aggregation, high stability of the metastable amorphous phase and the PL emission for at least 96 h in water and supplemented culture medium. MTT assay of HepaRG cells, incubated for 24 and 48 h with the nanoparticles in concentrations ranging from 10 to 320 µg mL-1, evidenced their high biocompatibility. Internalization studies using the nanoparticles self-activated luminescence showed that cellular uptake of the nanoparticles is both time (4-24 h) and concentration (160-320 µg mL-1) dependent. Experiments using confocal laser scanning microscopy allowed the successful imaging of the nanoparticles inside cells via their intrinsic PL after 4 h of incubation. Our results highlight the potential use of citrate-functionalized carbonated ACP nanoparticles for use in internalization assays and bioimaging procedures.


Assuntos
Fosfatos de Cálcio , Nanopartículas , Fosfatos de Cálcio/química , Nanopartículas/química , Humanos , Tamanho da Partícula , Luminescência , Imagem Óptica , Sobrevivência Celular/efeitos dos fármacos , Carbonatos/química
16.
Neotrop Entomol ; 53(3): 608-616, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38598071

RESUMO

Insects of economic importance such as Leucoptera coffeella can cause high defoliation in plants and reduce crop yields. We aimed to identify changes in the ecological niche and potential zones of the invasion. Occurrence records were obtained from databases and bibliography. WorldClim V2.0 bioclimatic layers were used. For the modeling of the potential distribution, the kuenm R package was used by executing the Maxent algorithm. The potential distribution models suggested greatest environmental suitability extends from Europe, South Asia, and Central and South Africa, showing the "tropical and subtropical moist broadleaf forests" as the ecoregion that presents the greatest probability of the presence of L. coffeella. The potential distribution model projected in the invaded area agrees with the known distribution in the region (America), although the results show that it is occupying environmental spaces not present in the area of origin. This species presented a large proportion of the invaded niche that overlaps the native niche and is colonizing new environmental conditions in the invaded area relative to its native distribution (Africa). This information could be used in the planning of coffee crops on the American continent.


Assuntos
Ecossistema , Espécies Introduzidas , Animais , Distribuição Animal , Lepidópteros , Coffea , Mariposas
17.
BMC Cancer ; 13: 286, 2013 Jun 13.
Artigo em Inglês | MEDLINE | ID: mdl-23764045

RESUMO

BACKGROUND: Rhabdoid tumors are highly aggressive malignancies affecting infants and very young children. In many instances these tumors are resistant to conventional type chemotherapy necessitating alternative approaches. METHODS: Proliferation assays (MTT), apoptosis (propidium iodide/annexin V) and cell cycle analysis (DAPI), RNA expression microarrays and western blots were used to identify synergism of the HDAC (histone deacetylase) inhibitor SAHA with fenretinide, tamoxifen and doxorubicin in rhabdoidtumor cell lines. RESULTS: HDAC1 and HDAC2 are overexpressed in primary rhabdoid tumors and rhabdoid tumor cell lines. Targeting HDACs in rhabdoid tumors induces cell cycle arrest and apoptosis. On the other hand HDAC inhibition induces deregulated gene programs (MYCC-, RB program and the stem cell program) in rhabdoid tumors. These programs are in general associated with cell cycle progression. Targeting these activated pro-proliferative genes by combined approaches of HDAC-inhibitors plus fenretinide, which inhibits cyclinD1, exhibit strong synergistic effects on induction of apoptosis. Furthermore, HDAC inhibition sensitizes rhabdoid tumor cell lines to cell death induced by chemotherapy. CONCLUSION: Our data demonstrate that HDAC inhibitor treatment in combination with fenretinide or conventional chemotherapy is a promising tool for the treatment of chemoresistant rhabdoid tumors.


Assuntos
Protocolos de Quimioterapia Combinada Antineoplásica/farmacologia , Inibidores de Histona Desacetilases/administração & dosagem , Histona Desacetilases/metabolismo , Tumor Rabdoide/metabolismo , Apoptose/efeitos dos fármacos , Western Blotting , Linhagem Celular Tumoral , Doxorrubicina/administração & dosagem , Sinergismo Farmacológico , Fenretinida/administração & dosagem , Humanos , Ácidos Hidroxâmicos/administração & dosagem , Análise de Sequência com Séries de Oligonucleotídeos , Reação em Cadeia da Polimerase em Tempo Real , Tumor Rabdoide/patologia , Vorinostat
18.
Autophagy ; : 1-3, 2023 Jun 20.
Artigo em Inglês | MEDLINE | ID: mdl-37312406

RESUMO

Parkinson disease (PD) is caused by the loss of ventral midbrain dopaminergic neurons (mDANs) in the substantia nigra pars compacta (SNpc). These cells are especially vulnerable to stress but can be protected by autophagy enhancement strategies in vitro and in vivo. In our recent study, we focused on the LIM (Lin11, Isl-1, and Mec-3)-domain homeobox transcription factors LMX1A (LIM homeobox transcription factor 1 alpha) and LMX1B (LIM homeobox transcription factor 1 beta), crucial drivers of mDAN differentiation with roles in autophagy gene expression for stress protection in the developed brain. Using human induced pluripotent stem cell (hiPSC)-derived mDANs and transformed human cell lines, we found that these autophagy gene transcription factors are themselves regulated by autophagy-mediated turnover. LMX1B possesses a non-canonical LC3-interacting region (LIR) in its C-terminus through which it interacts with ATG8 family members. The LMX1B LIR-like domain enables binding to ATG8 proteins in the nucleus, where ATG8 proteins act as co-factors for robust transcription of LMX1B target genes. Thus, we propose a novel role for ATG8 proteins as autophagy gene transcriptional co-factors for mDAN stress protection in PD.

19.
J Mol Biol ; 435(24): 168353, 2023 12 15.
Artigo em Inglês | MEDLINE | ID: mdl-37935254

RESUMO

The Y-family DNA polymerases - Pol ι, Pol η, Pol κ and Rev1 - are most well-known for their roles in the DNA damage tolerance pathway of translesion synthesis (TLS). They function to overcome replication barriers by bypassing DNA damage lesions that cannot be normally replicated, allowing replication forks to continue without stalling. In this work, we demonstrate a novel interaction between each Y-family polymerase and the nucleotide excision repair (NER) proteins, RAD23A and RAD23B. We initially focus on the interaction between RAD23A and Pol ι, and through a series of biochemical, cell-based, and structural assays, find that the RAD23A ubiquitin-binding domains (UBA1 and UBA2) interact with separate sites within the Pol ι catalytic domain. While this interaction involves the ubiquitin-binding cleft of UBA2, Pol ι interacts with a distinct surface on UBA1. We further find that mutating or deleting either UBA domain disrupts the RAD23A-Pol ι interaction, demonstrating that both interactions are necessary for stable binding. We also provide evidence that both RAD23 proteins interact with Pol ι in a similar manner, as well as with each of the Y-family polymerases. These results shed light on the interplay between the different functions of the RAD23 proteins and reveal novel binding partners for the Y-family TLS polymerases.


Assuntos
Enzimas Reparadoras do DNA , Proteínas de Ligação a DNA , DNA Polimerase Dirigida por DNA , Dano ao DNA , DNA Polimerase iota/química , Reparo do DNA , Replicação do DNA , DNA Polimerase Dirigida por DNA/metabolismo , Ubiquitinas/química , Proteínas de Ligação a DNA/química , Enzimas Reparadoras do DNA/química
20.
Cells ; 12(8)2023 04 11.
Artigo em Inglês | MEDLINE | ID: mdl-37190043

RESUMO

Autophagy is an intracellular lysosomal degradation pathway by which cytoplasmic cargoes are removed to maintain cellular homeostasis. Monitoring autophagy flux is crucial to understand the autophagy process and its biological significance. However, assays to measure autophagy flux are either complex, low throughput or not sensitive enough for reliable quantitative results. Recently, ER-phagy has emerged as a physiologically relevant pathway to maintain ER homeostasis but the process is poorly understood, highlighting the need for tools to monitor ER-phagy flux. In this study, we validate the use of the signal-retaining autophagy indicator (SRAI), a fixable fluorescent probe recently generated and described to detect mitophagy, as a versatile, sensitive and convenient probe for monitoring ER-phagy. This includes the study of either general selective degradation of the endoplasmic reticulum (ER-phagy) or individual forms of ER-phagy involving specific cargo receptors (e.g., FAM134B, FAM134C, TEX264 and CCPG1). Crucially, we present a detailed protocol for the quantification of autophagic flux using automated microscopy and high throughput analysis. Overall, this probe provides a reliable and convenient tool for the measurement of ER-phagy.


Assuntos
Autofagia , Proteínas de Membrana , Proteínas de Membrana/metabolismo , Retículo Endoplasmático/metabolismo , Estresse do Retículo Endoplasmático , Proteínas Relacionadas à Autofagia/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA