Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 233
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
3.
Clin Sci (Lond) ; 138(6): 387-412, 2024 03 20.
Artigo em Inglês | MEDLINE | ID: mdl-38505993

RESUMO

Complement is an important component of innate immune defence against pathogens and crucial for efficient immune complex disposal. These core protective activities are dependent in large part on properly regulated complement-mediated inflammation. Dysregulated complement activation, often driven by persistence of activating triggers, is a cause of pathological inflammation in numerous diseases, including neurological diseases. Increasingly, this has become apparent not only in well-recognized neuroinflammatory diseases like multiple sclerosis but also in neurodegenerative and neuropsychiatric diseases where inflammation was previously either ignored or dismissed as a secondary event. There is now a large and rapidly growing body of evidence implicating complement in neurological diseases that cannot be comprehensively addressed in a brief review. Here, we will focus on neurodegenerative diseases, including not only the 'classical' neurodegenerative diseases such as Alzheimer's disease and Parkinson's disease, but also two other neurological diseases where neurodegeneration is a neglected feature and complement is implicated, namely, schizophrenia, a neurodevelopmental disorder with many mechanistic features of neurodegeneration, and multiple sclerosis, a demyelinating disorder where neurodegeneration is a major cause of progressive decline. We will discuss the evidence implicating complement as a driver of pathology in these diverse diseases and address briefly the potential and pitfalls of anti-complement drug therapy for neurodegenerative diseases.


Assuntos
Doença de Alzheimer , Esclerose Múltipla , Doenças Neurodegenerativas , Doença de Parkinson , Humanos , Inflamação , Esclerose Múltipla/tratamento farmacológico
4.
J Immunol ; 208(11): 2482-2496, 2022 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-35500934

RESUMO

Rheumatoid arthritis (RA) is an autoimmune disease characterized by synovial hyperplasia and inflammation. The finding of autoantibodies in seropositive RA suggests that complement system activation might play a pathophysiologic role due to the local presence of immune complexes in the joints. Our first objective was to explore the Pathobiology of Early Arthritis Cohort (PEAC) mRNA sequencing data for correlations between clinical disease severity as measured by DAS28-ESR (disease activity score in 28 joints for erythrocyte sedimentation rate) and complement system gene expression, both in the synovium and in blood. Our second objective was to determine the biodistribution using multiplex immunohistochemical staining of specific complement activation proteins and inhibitors from subjects in the Accelerating Medicines Partnership (AMP) RA/SLE study. In the PEAC study, there were significant positive correlations between specific complement gene mRNA expression levels in the synovium and DAS28-ESR for the following complement genes: C2, FCN1, FCN3, CFB, CFP, C3AR1, C5AR1, and CR1 Additionally, there were significant negative correlations between DAS28-ESR and Colec12, C5, C6, MASP-1, CFH, and MCP In the synovium there were also significant positive correlations between DAS28-ESR and FcγR1A, FcγR1B, FcγR2A, and FcγR3A Notably, CFHR4 synovial expression was positively correlated following treatment with the DAS28-ESR at 6 mo, suggesting a role in worse therapeutic responses. The inverse correlation of C5 RNA expression in the synovium may underlie the failure of significant benefit from C5/C5aR inhibitors in clinical trials performed in patients with RA. Multiplex immunohistochemical analyses of early RA synovium reveal significant evidence of regional alterations of activation and inhibitory factors that likely promote local complement activation.


Assuntos
Artrite Reumatoide , Membrana Sinovial , Artrite Reumatoide/tratamento farmacológico , Proteínas do Sistema Complemento/metabolismo , Expressão Gênica , Humanos , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Índice de Gravidade de Doença , Membrana Sinovial/metabolismo , Distribuição Tecidual
5.
Glia ; 71(6): 1522-1535, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-36825534

RESUMO

Genome wide association studies (GWAS) have highlighted the importance of the complement cascade in pathogenesis of Alzheimer's disease (AD). Complement receptor 1 (CR1; CD35) is among the top GWAS hits. The long variant of CR1 is associated with increased risk for AD; however, roles of CR1 in brain health and disease are poorly understood. A critical confounder is that brain expression of CR1 is controversial; failure to demonstrate brain expression has provoked the suggestion that peripherally expressed CR1 influences AD risk. We took a multi-pronged approach to establish whether CR1 is expressed in brain. Expression of CR1 at the protein and mRNA level was assessed in human microglial lines, induced pluripotent stem cell (iPSC)-derived microglia from two sources and brain tissue from AD and control donors. CR1 protein was detected in microglial lines and iPSC-derived microglia expressing different CR1 variants when immunostained with a validated panel of CR1-specific antibodies; cell extracts were positive for CR1 protein and mRNA. CR1 protein was detected in control and AD brains, co-localizing with astrocytes and microglia, and expression was significantly increased in AD compared to controls. CR1 mRNA expression was detected in all AD and control brain samples tested; expression was significantly increased in AD. The data unequivocally demonstrate that the CR1 transcript and protein are expressed in human microglia ex vivo and on microglia and astrocytes in situ in the human brain; the findings support the hypothesis that CR1 variants affect AD risk by directly impacting glial functions.


Assuntos
Doença de Alzheimer , Estudo de Associação Genômica Ampla , Humanos , Doença de Alzheimer/patologia , Encéfalo/metabolismo , Microglia/metabolismo
6.
Immunology ; 168(3): 473-492, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36175370

RESUMO

Complement, a critical defence against pathogens, has been implicated as a driver of pathology in COVID-19. Complement activation products are detected in plasma and tissues and complement blockade is considered for therapy. To delineate roles of complement in immunopathogenesis, we undertook the largest comprehensive study of complement in COVID-19 to date, comprehensive profiling of 16 complement biomarkers, including key components, regulators and activation products, in 966 plasma samples from 682 hospitalized COVID-19 patients collected across the hospitalization period as part of the UK ISARIC4C (International Acute Respiratory and Emerging Infection Consortium) study. Unsupervised clustering of complement biomarkers mapped to disease severity and supervised machine learning identified marker sets in early samples that predicted peak severity. Compared to healthy controls, complement proteins and activation products (Ba, iC3b, terminal complement complex) were significantly altered in COVID-19 admission samples in all severity groups. Elevated alternative pathway activation markers (Ba and iC3b) and decreased alternative pathway regulator (properdin) in admission samples were associated with more severe disease and risk of death. Levels of most complement biomarkers were reduced in severe disease, consistent with consumption and tissue deposition. Latent class mixed modelling and cumulative incidence analysis identified the trajectory of increase of Ba to be a strong predictor of peak COVID-19 disease severity and death. The data demonstrate that early-onset, uncontrolled activation of complement, driven by sustained and progressive amplification through the alternative pathway amplification loop is a ubiquitous feature of COVID-19, further exacerbated in severe disease. These findings provide novel insights into COVID-19 immunopathogenesis and inform strategies for therapeutic intervention.


Assuntos
COVID-19 , Humanos , Ativação do Complemento , Proteínas do Sistema Complemento/metabolismo , Complemento C3b , Biomarcadores , Progressão da Doença , Via Alternativa do Complemento
7.
J Neuroinflammation ; 20(1): 245, 2023 Oct 24.
Artigo em Inglês | MEDLINE | ID: mdl-37875972

RESUMO

BACKGROUND: Homozygous CD59-deficient patients manifest with recurrent peripheral neuropathy resembling Guillain-Barré syndrome (GBS), hemolytic anemia and recurrent strokes. Variable mutations in CD59 leading to loss of function have been described and, overall, 17/18 of patients with any mutation presented with recurrent GBS. Here we determine the localization and possible role of membrane-bound complement regulators, including CD59, in the peripheral nervous systems (PNS) of mice and humans. METHODS: We examined the localization of membrane-bound complement regulators in the peripheral nerves of healthy humans and a CD59-deficient patient, as well as in wild-type (WT) and CD59a-deficient mice. Cross sections of teased sciatic nerves and myelinating dorsal root ganglia (DRG) neuron/Schwann cell cultures were examined by confocal and electron microscopy. RESULTS: We demonstrate that CD59a-deficient mice display normal peripheral nerve morphology but develop myelin abnormalities in older age. They normally express myelin protein zero (P0), ankyrin G (AnkG), Caspr, dystroglycan, and neurofascin. Immunolabeling of WT nerves using antibodies to CD59 and myelin basic protein (MBP), P0, and AnkG revealed that CD59 was localized along the internode but was absent from the nodes of Ranvier. CD59 was also detected in blood vessels within the nerve. Finally, we show that the nodes of Ranvier lack other complement-membrane regulatory proteins, including CD46, CD55, CD35, and CR1-related gene-y (Crry), rendering this area highly exposed to complement attack. CONCLUSION: The Nodes of Ranvier lack CD59 and are hence not protected from complement terminal attack. The myelin unit in human PNS is protected by CD59 and CD55, but not by CD46 or CD35. This renders the nodes and myelin in the PNS vulnerable to complement attack and demyelination in autoinflammatory Guillain-Barré syndrome, as seen in CD59 deficiency.


Assuntos
Síndrome de Guillain-Barré , Proteínas de Membrana , Camundongos , Humanos , Animais , Nós Neurofibrosos , Proteínas do Sistema Complemento , Antígenos CD59/genética , Antígenos CD55/genética
8.
Clin Exp Immunol ; 214(2): 209-218, 2023 12 12.
Artigo em Inglês | MEDLINE | ID: mdl-37549240

RESUMO

Peritonitis and the resulting peritoneal injuries are common problems that prevent long-term peritoneal dialysis (PD) therapy in patients with end-stage kidney diseases. Previously, we have analyzed the relationship between the complement system and progression of peritoneal injuries associated with PD, particularly focusing on the early activation pathways and effects of the anaphylatoxins. We here utilized a novel mAb 2H2 that blocks assembly of the membrane attack complex (MAC) to investigate roles of the complement terminal pathway in PD-associated peritoneal injury. We intraperitoneally injected mAb 2H2 anti-C5b-7 (2.5 or 5 mg/rat) once or twice over the five-day course of the experiment to investigate the effects of inhibiting formation of MAC in a fungal rat peritonitis model caused by repeated intraperitoneal administration of zymosan after methylglyoxal pretreatment (Zy/MGO model). Rats were sacrificed on day 5 and macroscopic changes in both parietal and visceral peritoneum evaluated. Peritoneal thickness, the abundance of fibrinogen and complement C3 and MAC deposition in tissue and accumulation of inflammatory cells were pathologically assessed. The results showed that mAb 2H2, but not isotype control mAb, reduced peritoneal thickness and accumulation of inflammatory cells in a dose and frequency-dependent manner in the Zy/MGO model. These effects were accompanied by decreased C3, MAC, and fibrinogen deposition in peritoneum. In conclusion, in the rat Zy/MGO model, complement terminal pathway activation and MAC formation substantially contributed to development of peritoneal injuries, suggesting that MAC-targeted therapies might be effective in preventing development of peritoneal injuries in humans.


Assuntos
Peritônio , Peritonite , Humanos , Ratos , Animais , Peritônio/lesões , Peritônio/metabolismo , Óxido de Magnésio/metabolismo , Óxido de Magnésio/farmacologia , Ratos Sprague-Dawley , Peritonite/tratamento farmacológico , Ativação do Complemento , Complexo de Ataque à Membrana do Sistema Complemento/metabolismo , Fibrinogênio/metabolismo
9.
Alzheimers Dement ; 19(4): 1383-1392, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36149090

RESUMO

INTRODUCTION: Down syndrome (DS) is associated with immune dysregulation and a high risk of early onset Alzheimer's disease (AD). Complement is a key part of innate immunity and driver of pathological inflammation, including neuroinflammation in AD. Complement dysregulation has been reported in DS; however, the pattern of dysregulation and its relationship to AD risk is unclear. METHODS: Plasma levels of 14 complement biomarkers were measured in 71 adults with DS and 46 controls to identify DS-associated dysregulation; impact of apolipoprotein E (APOE) ε4 genotype, single nucleotide polymorphisms (SNPs) in CLU and CR1, and dementia on complement biomarkers was assessed. RESULTS: Plasma levels of complement activation products (TCC, iC3b), proteins (C1q, C3, C9), and regulators (C1 inhibitor, factor H, FHR4, clusterin) were significantly elevated in DS versus controls while FI and sCR1 were significantly lower. In DS with AD (n = 13), C3 and FI were significantly decreased compared to non-AD DS (n = 58). Neither APOE genotype nor CLU SNPs impacted complement levels, while rs6656401 in CR1 significantly impacted plasma sCR1 levels. CONCLUSIONS: Complement is dysregulated in DS, likely reflecting the generalized immune dysregulation state; measurement may help identify inflammatory events in individuals with DS. Complement biomarkers differed in DS with and without AD and may aid diagnosis and/or prediction. HIGHLIGHTS: Complement is significantly dysregulated in plasma of people with DS who show changes in levels of multiple complement proteins compared to controls. People with DS and dementia show evidence of additional complement dysregulation with significantly lower levels of C3 and factor I compared to those without dementia. rs6656401 in CR1 was associated with significantly elevated sCR1 plasma levels in DS.


Assuntos
Doença de Alzheimer , Síndrome de Down , Adulto , Humanos , Doença de Alzheimer/metabolismo , Síndrome de Down/complicações , Proteínas do Sistema Complemento/genética , Apolipoproteínas E/genética , Apolipoproteína E4/genética , Biomarcadores
10.
J Infect Dis ; 225(10): 1861-1864, 2022 05 16.
Artigo em Inglês | MEDLINE | ID: mdl-34971376

RESUMO

A safe and effective vaccine against multidrug-resistant gonorrhea is urgently needed. An experimental peptide vaccine called TMCP2 that mimics an oligosaccharide epitope in gonococcal lipooligosaccharide, when adjuvanted with glucopyranosyl lipid adjuvant-stable emulsion, elicits bactericidal immunoglobulin G and hastens clearance of gonococci in the mouse vaginal colonization model. In this study, we show that efficacy of TMCP2 requires an intact terminal complement pathway, evidenced by loss of activity in C9-/- mice or when C7 function was blocked. In conclusion, TMCP2 vaccine efficacy in the mouse vagina requires membrane attack complex. Serum bactericidal activity may serve as a correlate of protection for TMCP2.


Assuntos
Gonorreia , Neisseria gonorrhoeae , Animais , Vacinas Bacterianas , Proteínas do Sistema Complemento , Modelos Animais de Doenças , Feminino , Gonorreia/prevenção & controle , Lipopolissacarídeos , Camundongos
11.
Immunology ; 165(2): 250-259, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-34775604

RESUMO

Accurate assessment of SARS-CoV-2 immunity is critical in evaluating vaccine efficacy and devising public health policies. Whilst the exact nature of effective immunity remains incompletely defined, SARS-CoV-2-specific T-cell responses are a critical feature that will likely form a key correlate of protection against COVID-19. Here, we developed and optimized a high-throughput whole blood-based assay to determine the T-cell response associated with prior SARS-CoV-2 infection and/or vaccination amongst 231 healthy donors and 68 cancer patients. Following overnight in vitro stimulation with SARS-CoV-2-specific peptides, blood plasma samples were analysed for TH 1-type cytokines. Highly significant differential IFN-γ+ /IL-2+ SARS-CoV-2-specific T-cell responses were seen amongst previously infected COVID-19-positive healthy donors in comparison with unknown / naïve individuals (p < 0·0001). IFN-γ production was more effective at identifying asymptomatic donors, demonstrating higher sensitivity (96·0% vs. 83·3%) but lower specificity (84·4% vs. 92·5%) than measurement of IL-2. A single COVID-19 vaccine dose induced IFN-γ and/or IL-2 SARS-CoV-2-specific T-cell responses in 116 of 128 (90·6%) healthy donors, reducing significantly to 27 of 56 (48·2%) when measured in cancer patients (p < 0·0001). A second dose was sufficient to boost T-cell responses in the majority (90·6%) of cancer patients, albeit IFN-γ+ responses were still significantly lower overall than those induced in healthy donors (p = 0·034). Three-month post-vaccination T-cell responses also declined at a faster rate in cancer patients. Overall, this cost-effective standardizable test ensures accurate and comparable assessments of SARS-CoV-2-specific T-cell responses amenable to widespread population immunity testing, and identifies individuals at greater need of booster vaccinations.


Assuntos
Vacinas contra COVID-19/imunologia , COVID-19/imunologia , Portador Sadio/imunologia , Imunidade Celular , Imunogenicidade da Vacina , SARS-CoV-2/imunologia , Células Th1/imunologia , Vacinação , Adolescente , Adulto , Idoso , Idoso de 80 Anos ou mais , COVID-19/prevenção & controle , Feminino , Humanos , Interferon gama/imunologia , Masculino , Pessoa de Meia-Idade
12.
Brain Behav Immun ; 99: 70-82, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34543680

RESUMO

Complement is a key component of the immune system with roles in inflammation and host-defence. Here we reveal novel functions of complement pathways impacting on emotional reactivity of potential relevance to the emerging links between complement and risk for psychiatric disorder. We used mouse models to assess the effects of manipulating components of the complement system on emotionality. Mice lacking the complement C3a Receptor (C3aR-/-) demonstrated a selective increase in unconditioned (innate) anxiety whilst mice deficient in the central complement component C3 (C3-/-) showed a selective increase in conditioned (learned) fear. The dissociable behavioural phenotypes were linked to different signalling mechanisms. Effects on innate anxiety were independent of C3a, the canonical ligand for C3aR, consistent with the existence of an alternative ligand mediating innate anxiety, whereas effects on learned fear were due to loss of iC3b/CR3 signalling. Our findings show that specific elements of the complement system and associated signalling pathways contribute differentially to heightened states of anxiety and fear commonly seen in psychopathology.


Assuntos
Complemento C3 , Transtornos Mentais , Receptores de Complemento , Animais , Complemento C3/genética , Complemento C3/metabolismo , Modelos Animais de Doenças , Inflamação , Camundongos , Transdução de Sinais
13.
Int J Mol Sci ; 23(18)2022 Sep 14.
Artigo em Inglês | MEDLINE | ID: mdl-36142647

RESUMO

BACKGROUND: Chronic inflammation is an important driver in the progression of non-alcoholic steatohepatitis (NASH) and atherosclerosis. The complement system, one of the first lines of defense in innate immunity, has been implicated in both diseases. However, the potential therapeutic value of complement inhibition in the ongoing disease remains unclear. METHODS: After 20 weeks of high-fat diet (HFD) feeding, obese Ldlr-/-.Leiden mice were treated twice a week with an established anti-C5 antibody (BB5.1) or vehicle control. A separate group of mice was kept on a chow diet as a healthy reference. After 12 weeks of treatment, NASH was analyzed histopathologically, and genome-wide hepatic gene expression was analyzed by next-generation sequencing and pathway analysis. Atherosclerotic lesion area and severity were quantified histopathologically in the aortic roots. RESULTS: Anti-C5 treatment considerably reduced complement system activity in plasma and MAC deposition in the liver but did not affect NASH. Anti-C5 did, however, reduce the development of atherosclerosis, limiting the total lesion size and severity independently of an effect on plasma cholesterol but with reductions in oxidized LDL (oxLDL) and macrophage migration inhibitory factor (MIF). CONCLUSION: We show, for the first time, that treatment with an anti-C5 antibody in advanced stages of NASH is not sufficient to reduce the disease, while therapeutic intervention against established atherosclerosis is beneficial to limit further progression.


Assuntos
Aterosclerose , Fatores Inibidores da Migração de Macrófagos , Hepatopatia Gordurosa não Alcoólica , Animais , Aterosclerose/metabolismo , Colesterol/metabolismo , Complemento C5/metabolismo , Dieta Hiperlipídica/efeitos adversos , Modelos Animais de Doenças , Fígado/metabolismo , Fatores Inibidores da Migração de Macrófagos/genética , Fatores Inibidores da Migração de Macrófagos/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Hepatopatia Gordurosa não Alcoólica/metabolismo , Receptores de LDL/genética , Receptores de LDL/metabolismo
14.
Brain Behav Immun ; 98: 136-150, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34403734

RESUMO

Adult hippocampal neurogenesis (AHN) is a form of ongoing plasticity in the brain that supports specific aspects of cognition. Disruptions in AHN have been observed in neuropsychiatric conditions presenting with inflammatory components and are associated with impairments in cognition and mood. Recent evidence highlights important roles of the complement system in synaptic plasticity and neurogenesis during neurodevelopment and in acute learning and memory processes. In this work we investigated the impact of the complement C3/C3aR pathway on AHN and its functional implications for AHN-related behaviours. In C3-/- mice, we found increased numbers and accelerated migration of adult born granule cells, indicating that absence of C3 leads to abnormal survival and distribution of adult born neurons. Loss of either C3 or C3aR affected the morphology of immature neurons, reducing morphological complexity, though these effects were more pronounced in the absence of C3aR. We assessed functional impacts of the cellular phenotypes in an operant spatial discrimination task that assayed AHN sensitive behaviours. Again, we observed differences in the effects of manipulating C3 or C3aR, in that whilst C3aR-/- mice showed evidence of enhanced pattern separation abilities, C3-/- mice instead demonstrated impaired behavioural flexibility. Our findings show that C3 and C3aR manipulation have distinct effects on AHN that impact at different stages in the development and maturation of newly born neurons, and that the dissociable cellular phenotypes are associated with specific alterations in AHN-related behaviours.


Assuntos
Complemento C3 , Hipocampo , Animais , Cognição , Complemento C3/genética , Complemento C3/metabolismo , Hipocampo/metabolismo , Masculino , Camundongos , Neurogênese , Neurônios/metabolismo
15.
Brain Behav Immun ; 88: 913-915, 2020 08.
Artigo em Inglês | MEDLINE | ID: mdl-31981599

RESUMO

BACKGROUND: Recent evidence has highlighted the potential role of complement component 4 (C4) in the development of schizophrenia. However, it remains unclear whether C4 is also relevant for clinical outcome and if it could be considered a possible therapeutic target. The aim of this naturalistic longitudinal study was to investigate whether baseline levels of C4 predict worse clinical outcome at 1-year follow-up in patients with first episode psychosis. METHODS: Twenty-five patients with first episode psychosis were assessed at baseline and followed-up prospectively for their clinical outcome at 1 year from baseline assessment. Concentrations of complement component 4 (C4) were measured using ELISA methods from baseline serum samples. Twelve patients were classified as non-responders and 13 as responders. ANCOVA analyses were conducted to investigate differences in baseline C4 levels between responders and non-responders at 1-year covarying for baseline severity of symptoms and for levels of C reactive protein. RESULTS: Non-responders show significantly higher baseline C4 levels compared with responders when controlling for baseline psychopathology and baseline levels of C reactive protein (552.5 ± 31.3 vs 437.6 ± 25.5 mcg/ml; p = 0.008). When investigating the ability of C4 levels to distinguish responders from non-responders, we found that the area under the ROC curve was 0.795 and the threshold point for C4 to distinguish between responders and non-responders appear to be around 490 mcg/ml. CONCLUSIONS: Our preliminary findings show that baseline C4 levels predict clinical outcome at 1-year follow-up in patients with first episode psychosis.


Assuntos
Transtornos Psicóticos , Esquizofrenia , Complemento C4 , Seguimentos , Humanos , Estudos Longitudinais
16.
BMC Genet ; 21(1): 101, 2020 09 09.
Artigo em Inglês | MEDLINE | ID: mdl-32907542

RESUMO

BACKGROUND: The complement cascade is increasingly implicated in development of a variety of diseases with strong immune contributions such as Alzheimer's disease and Systemic Lupus Erythematosus. Mouse models have been used to determine function of central components of the complement cascade such as C1q and C3. However, species differences in their gene structures mean that mice do not adequately replicate human complement regulators, including CR1 and CR2. Genetic variation in CR1 and CR2 have been implicated in modifying disease states but the mechanisms are not known. RESULTS: To decipher the roles of human CR1 and CR2 in health and disease, we engineered C57BL/6J (B6) mice to replace endogenous murine Cr2 with human complement receptors, CR1 and CR2 (B6.CR2CR1). CR1 has an array of allotypes in human populations and using traditional recombination methods (Flp-frt and Cre-loxP) two of the most common alleles (referred to here as CR1long and CR1short) can be replicated within this mouse model, along with a CR1 knockout allele (CR1KO). Transcriptional profiling of spleens and brains identified genes and pathways differentially expressed between mice homozygous for either CR1long, CR1short or CR1KO. Gene set enrichment analysis predicts hematopoietic cell number and cell infiltration are modulated by CR1long, but not CR1short or CR1KO. CONCLUSION: The B6.CR2CR1 mouse model provides a novel tool for determining the relationship between human-relevant CR1 alleles and disease.


Assuntos
Receptores de Complemento 3b/genética , Receptores de Complemento 3d/genética , Alelos , Animais , Modelos Animais de Doenças , Feminino , Homozigoto , Humanos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Regiões Promotoras Genéticas , Transcriptoma
17.
Mult Scler ; 26(14): 1929-1937, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-31701790

RESUMO

BACKGROUND: Multiple sclerosis (MS) can be difficult to differentiate from other demyelinating diseases, notably neuromyelitis optica spectrum disorder (NMOSD). We previously showed that NMOSD is distinguished from MS by plasma complement biomarkers. OBJECTIVE: Here, we measure cerebrospinal fluid (CSF) complement proteins in MS, NMOSD and clinically isolated syndrome (CIS), a neurological episode that may presage MS, to test whether these distinguish NMOSD from MS and CIS. MATERIALS AND METHODS: CSF (53 MS, 17 CIS, 11 NMOSD, 35 controls) was obtained; complement proteins (C4, C3, C5, C9, C1, C1q, Factor B (FB)), regulators (Factor I (FI), Factor H (FH), FH-Related Proteins 1, 2 and 5 (FHR125), C1 Inhibitor (C1INH), Properdin) and activation products (terminal complement complex (TCC), iC3b) were quantified by ELISA and results expressed relative to CSF total protein (µg/mg). RESULTS: Compared to control CSF, (1) levels of C4, C1INH and Properdin were elevated in MS; (2) TCC, iC3b, FI and FHR125 were increased in CIS; and (3) all complement biomarkers except TCC, FHR125, Properdin and C5 were higher in NMOSD CSF. A statistical model comprising six analytes (C3, C9, FB, C1q, FI, Properdin) plus age/gender optimally differentiated MS from NMOSD.


Assuntos
Esclerose Múltipla , Neuromielite Óptica , Biomarcadores , Complexo de Ataque à Membrana do Sistema Complemento , Proteínas do Sistema Complemento , Humanos , Esclerose Múltipla/diagnóstico
18.
J Immunol ; 200(1): 327-335, 2018 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-29167230

RESUMO

CD59 is a membrane-bound regulatory protein that inhibits the assembly of the terminal membrane attack complex (C5b-9) of complement. From its original discovery in humans almost 30 years ago, CD59 has been characterized in a variety of species, from primates to early vertebrates, such as teleost fish. CD59 is ubiquitous in mammals; however, we have described circumstantial evidence suggesting that guinea pigs (Cavia porcellus) lack CD59, at least on erythrocytes. In this study, we have used a combination of phylogenetic analyses with syntenic alignment of mammalian CD59 genes to identify the only span of genomic DNA in C. porcellus that is homologous to a portion of mammalian CD59 and show that this segment of DNA is not transcribed. We describe a pseudogene sharing homology to exons 2 through 5 of human CD59 present in the C. porcellus genome. This pseudogene was flanked by C. porcellus homologs of two genes, FBXO3 and ORF91, a relationship and orientation that were consistent with other known mammalian CD59 genes. Analysis using RNA sequencing confirmed that this segment of chromosomal DNA was not transcribed. We conclude that guinea pigs lack an intact gene encoding CD59; to our knowledge, this is the first report of a mammalian species that does not express a functional CD59. The pseudogene we describe is likely the product of a genomic deletion event during its evolutionary divergence from other members of the rodent order.


Assuntos
Antígenos CD59/genética , Eritrócitos/fisiologia , Pseudogenes/genética , Animais , Complexo de Ataque à Membrana do Sistema Complemento/metabolismo , Evolução Molecular , Genoma , Cobaias , Humanos , Filogenia , Alinhamento de Sequência
19.
Semin Cell Dev Biol ; 72: 124-132, 2017 12.
Artigo em Inglês | MEDLINE | ID: mdl-28647534

RESUMO

The membrane attack complex (MAC) is the pore-forming toxin of the complement system, a relatively early evolutionary acquisition that confers upon complement the capacity to directly kill pathogens. The MAC is more than just a bactericidal missile, having the capacity when formed on self-cells to initiate a host of cell activation events that can have profound consequences for tissue homeostasis in the face of infection or injury. Although the capacity of complement to directly kill pathogens has been recognised for over a century, and the pore-forming killing mechanism for at least 50 years, there remains considerable uncertainty regarding precisely how MAC mediates its killing and cell activation activities. A recent burst of new information on MAC structure provides context and opportunity to re-assess the ways in which MAC kills bacteria and modulates cell functions. In this brief review we will describe key aspects of MAC evolution, function and structure and seek to use the new structural information to better explain how the MAC works.


Assuntos
Bactérias/imunologia , Infecções Bacterianas/imunologia , Membrana Celular/imunologia , Complexo de Ataque à Membrana do Sistema Complemento/imunologia , Animais , Bactérias/classificação , Infecções Bacterianas/microbiologia , Membrana Celular/metabolismo , Membrana Celular/microbiologia , Complexo de Ataque à Membrana do Sistema Complemento/metabolismo , Complexo de Ataque à Membrana do Sistema Complemento/ultraestrutura , Humanos , Microscopia Eletrônica , Modelos Moleculares , Conformação Proteica
20.
Immunology ; 157(4): 283-295, 2019 08.
Artigo em Inglês | MEDLINE | ID: mdl-31120547

RESUMO

Over the last decade there has been an explosion in complement therapies; one-third of the drugs in the clinic or in development target C5 protein. Eculizumab, a monoclonal antibody (mAb) that binds C5 and blocks its cleavage by the convertase, is the current reference standard treatment for atypical haemolytic uraemic syndrome (aHUS) and paroxysmal nocturnal haemoglobinuria (PNH) and in clinical trials for many other diseases. Here we describe a panel of novel anti-C5 mAb, including mAb that, like Eculizumab, are efficient inhibitors of complement but, unlike Eculizumab, inhibit across species, including human, rat, rabbit and guinea pig. Several inhibitory anti-C5 mAb were identified and characterized for C5 binding and lytic inhibitory capacity in comparison to current therapeutic anti-C5 mAb; three clones, 4G2, 7D4 and 10B6, were selected and further characterized for ligand specificity and affinity and cross-species inhibitory activity. The mAb 10B6 was human-specific whereas mAb 4G2 and 7D4 efficiently inhibited lysis by human, rabbit and rat serum, and weakly inhibited guinea pig complement; 7D4 also weakly inhibited mouse complement in vitro The rat C5-cross-reactive mAb 4G2, when administered intraperitoneally in a rat model of myasthenia gravis, effectively blocked the disease and protected muscle endplates from destruction. To our knowledge this is the first report of an anti-C5 function blocking mAb that permits preclinical studies in rats.


Assuntos
Anticorpos Monoclonais Murinos , Complemento C5/imunologia , Miastenia Gravis , Animais , Anticorpos Monoclonais Murinos/imunologia , Anticorpos Monoclonais Murinos/farmacologia , Complemento C5/antagonistas & inibidores , Reações Cruzadas , Modelos Animais de Doenças , Cobaias , Humanos , Camundongos , Miastenia Gravis/tratamento farmacológico , Miastenia Gravis/imunologia , Miastenia Gravis/patologia , Coelhos , Ratos , Especificidade da Espécie
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA