Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
1.
Proc Natl Acad Sci U S A ; 108(48): 19389-94, 2011 Nov 29.
Artigo em Inglês | MEDLINE | ID: mdl-22084112

RESUMO

The axonal projection pattern of sensory neurons typically is regulated by environmental signals, but how different sensory afferents can establish distinct projections in the same environment remains largely unknown. Drosophila class IV dendrite arborization (C4da) sensory neurons project subtype-specific axonal branches in the ventral nerve cord, and we show that the Tripartite motif protein, Anomalies in sensory axon patterning (Asap) is a critical determinant of the axonal projection patterns of different C4da neurons. Asap is highly expressed in C4da neurons with both ipsilateral and contralateral axonal projections, but the Asap level is low in neurons that have only ipsilateral projections. Mutations in asap cause a specific loss of contralateral projections, whereas overexpression of Asap induces ectopic contralateral projections in C4da neurons. We also show by biochemical and genetic analysis that Asap regulates Netrin signaling, at least in part by linking the Netrin receptor Frazzled to the downstream effector Pico. In the absence of Asap, the sensory afferent connectivity within the ventral nerve cord is disrupted, resulting in specific larval behavioral deficits. These results indicate that different levels of Asap determine distinct patterns of axonal projections of C4da neurons by modulating Netrin signaling and that the Asap-mediated axonal projection is critical for assembly of a functional sensory circuit.


Assuntos
Axônios/metabolismo , Proteínas de Drosophila/metabolismo , Drosophila/fisiologia , Proteínas do Tecido Nervoso/metabolismo , Neurogênese/fisiologia , Células Receptoras Sensoriais/fisiologia , Transdução de Sinais/fisiologia , Animais , Axônios/fisiologia , Proteínas de Drosophila/genética , Imunoprecipitação , Proteínas do Tecido Nervoso/genética , Receptores de Netrina , Receptores de Superfície Celular/metabolismo , Células Receptoras Sensoriais/citologia , Transdução de Sinais/genética , Técnicas do Sistema de Duplo-Híbrido
2.
J Biol Chem ; 284(39): 26620-30, 2009 Sep 25.
Artigo em Inglês | MEDLINE | ID: mdl-19632984

RESUMO

The mammalian intracellular phospholipase A(1) (iPLA(1)) family consists of three members, iPLA(1)alpha/PA-PLA(1), iPLA(1)beta/p125, and iPLA(1)gamma/KIAA0725p. Although iPLA(1)beta has been implicated in organization of the ER-Golgi compartments, little is known about the physiological role of its closest paralog, iPLA(1)gamma. Here we show that iPLA(1)gamma mediates a specific retrograde membrane transport pathway between the endoplasmic reticulum (ER) and the Golgi complex. iPLA(1)gamma appeared to be localized to the cytosol, the cis-Golgi, and the ER-Golgi intermediate compartment (ERGIC). Time-lapse microscopy revealed that a population of GFP-iPLA(1)gamma was associated with transport carriers moving out from the Golgi complex. Knockdown of iPLA(1)gamma expression by RNAi did not affect the anterograde transport of VSVGts045 but dramatically delayed two types of Golgi-to-ER retrograde membrane transport; that is, transfer of the Golgi membrane into the ER in the presence of brefeldin A and delivery of cholera toxin B subunit from the Golgi complex to the ER. Notably, knockdown of iPLA(1)gamma did not impair COPI- and Rab6-dependent retrograde transports represented by ERGIC-53 recycling and ER delivery of Shiga toxin, respectively. Thus, iPLA(1)gamma is a novel membrane transport factor that contributes to a specific Golgi-to-ER retrograde pathway distinct from presently characterized COPI- and Rab6-dependent pathways.


Assuntos
Complexo I de Proteína do Envoltório/metabolismo , Retículo Endoplasmático/metabolismo , Complexo de Golgi/metabolismo , Fosfolipases A1/metabolismo , Proteínas rab de Ligação ao GTP/metabolismo , Animais , Células CHO , Complexo I de Proteína do Envoltório/genética , Cricetinae , Cricetulus , Citosol/metabolismo , Citosol/ultraestrutura , Retículo Endoplasmático/ultraestrutura , Recuperação de Fluorescência Após Fotodegradação , Complexo de Golgi/ultraestrutura , Proteínas de Fluorescência Verde/genética , Proteínas de Fluorescência Verde/metabolismo , Células HeLa , Humanos , Microscopia Eletrônica , Microscopia de Fluorescência , Fosfolipases A1/genética , Transporte Proteico , RNA Interferente Pequeno/genética , Transfecção , Proteínas rab de Ligação ao GTP/genética
3.
Science ; 368(6495): 1108-1113, 2020 06 05.
Artigo em Inglês | MEDLINE | ID: mdl-32499439

RESUMO

Enabling near-infrared light sensitivity in a blind human retina may supplement or restore visual function in patients with regional retinal degeneration. We induced near-infrared light sensitivity using gold nanorods bound to temperature-sensitive engineered transient receptor potential (TRP) channels. We expressed mammalian or snake TRP channels in light-insensitive retinal cones in a mouse model of retinal degeneration. Near-infrared stimulation increased activity in cones, ganglion cell layer neurons, and cortical neurons, and enabled mice to perform a learned light-driven behavior. We tuned responses to different wavelengths, by using nanorods of different lengths, and to different radiant powers, by using engineered channels with different temperature thresholds. We targeted TRP channels to human retinas, which allowed the postmortem activation of different cell types by near-infrared light.


Assuntos
Cegueira/terapia , Ouro , Raios Infravermelhos , Nanotubos , Degeneração Retiniana/terapia , Limiar Sensorial/efeitos da radiação , Canais de Cátion TRPC/fisiologia , Visão Ocular/efeitos da radiação , Animais , Cegueira/fisiopatologia , Modelos Animais de Doenças , Potenciais Evocados Visuais/fisiologia , Potenciais Evocados Visuais/efeitos da radiação , Engenharia Genética , Células HEK293 , Humanos , Camundongos , Camundongos Endogâmicos C57BL , Estimulação Luminosa , Ratos , Células Fotorreceptoras Retinianas Cones/fisiologia , Células Fotorreceptoras Retinianas Cones/efeitos da radiação , Degeneração Retiniana/fisiopatologia , Células Ganglionares da Retina/fisiologia , Células Ganglionares da Retina/efeitos da radiação , Limiar Sensorial/fisiologia , Serpentes , Canais de Cátion TRPC/genética , Canais de Cátion TRPV/genética , Canais de Cátion TRPV/fisiologia , Visão Ocular/fisiologia , Córtex Visual/fisiopatologia , Córtex Visual/efeitos da radiação
4.
Nat Neurosci ; 22(8): 1345-1356, 2019 08.
Artigo em Inglês | MEDLINE | ID: mdl-31285614

RESUMO

Targeting genes to specific neuronal or glial cell types is valuable for both understanding and repairing brain circuits. Adeno-associated viruses (AAVs) are frequently used for gene delivery, but targeting expression to specific cell types is an unsolved problem. We created a library of 230 AAVs, each with a different synthetic promoter designed using four independent strategies. We show that a number of these AAVs specifically target expression to neuronal and glial cell types in the mouse and non-human primate retina in vivo and in the human retina in vitro. We demonstrate applications for recording and stimulation, as well as the intersectional and combinatorial labeling of cell types. These resources and approaches allow economic, fast and efficient cell-type targeting in a variety of species, both for fundamental science and for gene therapy.


Assuntos
Dependovirus/genética , Marcação de Genes/métodos , Neuroglia/virologia , Neurônios/virologia , Animais , Técnicas de Transferência de Genes , Humanos , Macaca fascicularis , Camundongos , Camundongos Endogâmicos C57BL , Regiões Promotoras Genéticas/genética , Retina/virologia
5.
Neuron ; 99(1): 117-134.e11, 2018 07 11.
Artigo em Inglês | MEDLINE | ID: mdl-29937281

RESUMO

Many brain regions contain local interneurons of distinct types. How does an interneuron type contribute to the input-output transformations of a given brain region? We addressed this question in the mouse retina by chemogenetically perturbing horizontal cells, an interneuron type providing feedback at the first visual synapse, while monitoring the light-driven spiking activity in thousands of ganglion cells, the retinal output neurons. We uncovered six reversible perturbation-induced effects in the response dynamics and response range of ganglion cells. The effects were enhancing or suppressive, occurred in different response epochs, and depended on the ganglion cell type. A computational model of the retinal circuitry reproduced all perturbation-induced effects and led us to assign specific functions to horizontal cells with respect to different ganglion cell types. Our combined experimental and theoretical work reveals how a single interneuron type can differentially shape the dynamical properties of distinct output channels of a brain region.


Assuntos
Retroalimentação , Interneurônios/fisiologia , Células Ganglionares da Retina/fisiologia , Células Horizontais da Retina/fisiologia , Visão Ocular/fisiologia , Animais , Cálcio/metabolismo , Camundongos , Modelos Neurológicos , Células Fotorreceptoras de Vertebrados , Células Bipolares da Retina , Sinapses
6.
Curr Biol ; 27(16): 2499-2504.e3, 2017 Aug 21.
Artigo em Inglês | MEDLINE | ID: mdl-28803873

RESUMO

Noxious stimuli trigger a stereotyped escape response in animals. In Drosophila larvae, class IV dendrite arborization (C4 da) sensory neurons in the peripheral nervous system are responsible for perception of multiple nociceptive modalities, including noxious heat and harsh mechanical stimulation, through distinct receptors [1-9]. Silencing or ablation of C4 da neurons largely eliminates larval responses to noxious stimuli [10-12], whereas optogenetic activation of C4 da neurons is sufficient to provoke corkscrew-like rolling behavior similar to what is observed when larvae receive noxious stimuli, such as high temperature or harsh mechanical stimulation [10-12]. The receptors and the regulatory mechanisms for C4 da activation in response to a variety of noxious stimuli have been well studied [13-23], yet how C4 da activation triggers the escape behavior in the circuit level is still incompletely understood. Here we identify segmentally arrayed local interneurons (medial clusters of C4 da second-order interneurons [mCSIs]) in the ventral nerve cord that are necessary and sufficient to trigger rolling behavior. GFP reconstitution across synaptic partners (GRASP) analysis indicates that C4 da axons form synapses with mCSI dendrites. Optogenetic activation of mCSIs induces the rolling behavior, whereas silencing mCSIs reduces the probability of rolling behavior upon C4 da activation. Further anatomical and functional studies suggest that the C4 da-mCSI nociceptive circuit evokes rolling behavior at least in part through segmental nerve a (SNa) motor neurons. Our findings thus uncover a local circuit that promotes escape behavior upon noxious stimuli in Drosophila larvae and provide mechanistic insights into how noxious stimuli are transduced into the stereotyped escape behavior in the circuit level.


Assuntos
Drosophila melanogaster/fisiologia , Nociceptores/fisiologia , Animais , Drosophila melanogaster/crescimento & desenvolvimento , Reação de Fuga , Larva/fisiologia
7.
Curr Biol ; 24(9): 1024-30, 2014 May 05.
Artigo em Inglês | MEDLINE | ID: mdl-24746793

RESUMO

Topographic projection of afferent terminals into 2D maps in the CNS is a general strategy used by the nervous system to encode the locations of sensory stimuli. In vertebrates, it is known that although guidance cues are critical for establishing a coarse topographic map, neural activity directs fine-scale topography between adjacent afferent terminals [1-4]. However, the molecular mechanism underlying activity-dependent regulation of fine-scale topography is poorly understood. Molecular analysis of the spatial relationship between adjacent afferent terminals requires reliable localization of the presynaptic terminals of single neurons as well as genetic manipulations with single-cell resolution in vivo. Although both requirements can potentially be met in Drosophila melanogaster [5, 6], no activity-dependent topographic system has been identified in flies [7]. Here we report a topographic system that is shaped by neuronal activity in Drosophila. With this system, we found that topographic separation of the presynaptic terminals of adjacent nociceptive neurons requires different levels of Trim9, an evolutionarily conserved signaling molecule [8-11]. Neural activity regulates Trim9 protein levels to direct fine-scale topography of sensory afferents. This study offers both a novel mechanism by which neural activity directs fine-scale topography of axon terminals and a new system to study this process at single-neuron resolution.


Assuntos
Vias Aferentes/fisiologia , Proteínas de Drosophila/genética , Drosophila melanogaster/fisiologia , Proteínas do Tecido Nervoso/genética , Terminações Pré-Sinápticas/fisiologia , Ubiquitina-Proteína Ligases/genética , Animais , Nociceptores/metabolismo , Topografia Médica , Proteínas com Motivo Tripartido
8.
Science ; 340(6139): 1475-8, 2013 Jun 21.
Artigo em Inglês | MEDLINE | ID: mdl-23722427

RESUMO

Dendrite pruning is critical for sculpting the final connectivity of neural circuits as it removes inappropriate projections, yet how neurons can selectively eliminate unnecessary dendritic branches remains elusive. Here, we show that calcium transients that are compartmentalized in specific dendritic branches act as temporal and spatial cues to trigger pruning in Drosophila sensory neurons. Calcium transients occurred in local dendrites at ~3 hours before branch elimination. In dendritic branches, intrinsic excitability increased locally to activate calcium influx via the voltage-gated calcium channels (VGCCs), and blockade of the VGCC activities impaired pruning. Further genetic analyses suggest that the calcium-activated protease calpain functions downstream of the calcium transients. Our findings reveal the importance of the compartmentalized subdendritic calcium signaling in spatiotemporally selective elimination of dendritic branches.


Assuntos
Cálcio/metabolismo , Dendritos/fisiologia , Células Receptoras Sensoriais/fisiologia , Animais , Canais de Cálcio/metabolismo , Sinalização do Cálcio , Calpaína/genética , Calpaína/metabolismo , Dendritos/ultraestrutura , Proteínas de Drosophila/metabolismo , Drosophila melanogaster , Feminino , Masculino , Metamorfose Biológica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA